Commit
·
f8a9026
1
Parent(s):
d40ccf6
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,9 +12,10 @@ from dashboard import *
|
|
| 12 |
|
| 13 |
# CHARGEMENT DES DONNEES
|
| 14 |
df_controls, df_individus, df_sites, df_distances, df_mapping = load_data_antenna()
|
| 15 |
-
liste_sites_antennes = ["Brelouze", "Mairie d'Annepont", "Grottes de Loubeau", "Le Plessis", "Puy-Chenin", "Cézelle", "La Bourtière", "Goizet (W)", "Château de Gagemont", "Faye-L'Abbesse - Bourg", "Guibaud", "Cave Billard", "Grotte de Boisdichon", "Les Roches", "Barrage de l'Aigle", "Gouffre de la Fage",
|
| 16 |
-
"
|
| 17 |
-
"Beauregard", "Grotte de la Deveze", "Petexaenea", "Gouffre de Bexanka", "Mikelauenziloa"]
|
|
|
|
| 18 |
|
| 19 |
# Initialisation des variables d'état
|
| 20 |
selected_dpt = []
|
|
@@ -22,13 +23,13 @@ selected_dpt_gant = []
|
|
| 22 |
selected_sp = []
|
| 23 |
selected_gender = []
|
| 24 |
selected_sites = []
|
|
|
|
| 25 |
selected_dates = [df_controls['DATE'].min(), df_controls['DATE'].max()]
|
| 26 |
dates_gant = [df_controls['DATE'].min(), df_controls['DATE'].max()]
|
| 27 |
df_empty = pd.DataFrame()
|
| 28 |
|
| 29 |
# CONTENU
|
| 30 |
## ROOT PAGE
|
| 31 |
-
|
| 32 |
FEDER = "images/FEDER-NA.png"
|
| 33 |
PREFET = "images/Prefet_NA.jpg"
|
| 34 |
VERT = "images/FranceNationVerte.jpg"
|
|
@@ -41,12 +42,24 @@ with open("pages/page1.md", "r", encoding = "utf-8") as file:
|
|
| 41 |
page1 = file.read()
|
| 42 |
|
| 43 |
## VISUALISATION DES DONNEES D'ANTENNES
|
|
|
|
| 44 |
departements = sorted(df_controls['DEPARTEMENT'].unique().tolist())
|
| 45 |
-
species = sorted(
|
| 46 |
-
genders = sorted(
|
| 47 |
-
sites = sorted(df_controls['LIEU_DIT'].unique().tolist())
|
| 48 |
dates = [df_controls['DATE'].min(), df_controls['DATE'].max()]
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
m = generate_map(df_empty, df_sites)
|
| 51 |
|
| 52 |
with open("pages/page2.md", "r", encoding = "utf-8") as file:
|
|
@@ -78,7 +91,7 @@ def refresh_map_button(state):
|
|
| 78 |
if state.selected_dates and len(state.selected_dates) == 2:
|
| 79 |
start_date = pd.Timestamp(state.selected_dates[0])
|
| 80 |
end_date = pd.Timestamp(state.selected_dates[1])
|
| 81 |
-
df_filtered = df_filtered[(df_filtered['
|
| 82 |
|
| 83 |
# Rafraichir la carte
|
| 84 |
state.m = generate_map(df_filtered, df_sites)
|
|
@@ -92,6 +105,7 @@ with open("pages/page3.md", "r", encoding = "utf-8") as file:
|
|
| 92 |
# Callbacks du diagramme de Gant
|
| 93 |
def update_gant(state):
|
| 94 |
df_filtered_gant = df_controls.copy()
|
|
|
|
| 95 |
|
| 96 |
# Convertir les dates sélectionnées en objets Timestamp
|
| 97 |
if state.selected_dpt_gant:
|
|
@@ -108,29 +122,32 @@ def update_gant(state):
|
|
| 108 |
|
| 109 |
## STATISTIQUES ANALYTIQUES
|
| 110 |
# Initialisation de tous les plots
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
# Initialisation des variables à plot
|
| 120 |
total_recaptured = df_controls['NUM_PIT'].nunique() # Individus contrôlés
|
| 121 |
total_marked = df_individus['NUM_PIT'].nunique() # Individus marqués
|
| 122 |
sites_capture = df_individus['LIEU_DIT'].nunique() # Sites capturés au moins une fois
|
| 123 |
sites_antennes = df_sites['LIEU_DIT'].nunique() # Sites contrôlés au moins une fois
|
| 124 |
-
transition_table_plot = df_distances[['CODE_ESP', '
|
| 125 |
-
transition_table_plot['
|
| 126 |
-
transition_table_plot = transition_table_plot.rename(columns = {'DATE':'DATE_DEPART'})
|
| 127 |
|
| 128 |
with open("pages/page4.md", "r", encoding = "utf-8") as file:
|
| 129 |
page4 = file.read()
|
| 130 |
|
| 131 |
## FICHE SITE
|
| 132 |
# Initialisation du sélecteur et des plots
|
| 133 |
-
selection_fiche = ['
|
| 134 |
df_controls_fiche = df_controls[df_controls['LIEU_DIT'].isin(selection_fiche)]
|
| 135 |
df_individus_fiche = df_individus[df_individus['LIEU_DIT'].isin(selection_fiche)]
|
| 136 |
df_distances_fiche = df_distances[(df_distances['SITE_DEPART'].isin(selection_fiche)) | (df_distances['SITE_ARRIVEE'].isin(selection_fiche))]
|
|
|
|
| 12 |
|
| 13 |
# CHARGEMENT DES DONNEES
|
| 14 |
df_controls, df_individus, df_sites, df_distances, df_mapping = load_data_antenna()
|
| 15 |
+
liste_sites_antennes = sorted(["Brelouze", "Mairie d'Annepont", "Grottes de Loubeau", "Le Plessis", "Puy-Chenin", "Cézelle", "La Bourtière", "Goizet (W)", "Château de Gagemont", "Faye-L'Abbesse - Bourg", "Guibaud", "Cave Billard", "Grotte de Boisdichon", "Les Roches", "Barrage de l'Aigle", "Gouffre de la Fage",
|
| 16 |
+
"Ancienne citerne à eau", "Château de Verteuil", "Les Dames", "Château de Hautefort", "Les Tours de Merle - Tour Fulcon", "Le Petit Pin", "Maison Brousse", "Caves de Laubenheimer", "Château de Villandraut", "Tunnel ferroviaire", "Grotte de la carrière", "Centrale hydroélectrique de Claredent", "Fermette des Nobis",
|
| 17 |
+
"Beauregard", "Grotte de la Deveze", "Petexaenea (Site générique Galeries N&S)", "Gouffre de Bexanka", "Mikelauenziloa"])
|
| 18 |
+
ETUDE_valides = ["Diag CEN", "Diag NATURA 2000", "Diag FDS_Oléron", "ECOFECT (GR/CCPNA)", "ECOFECT (Hors GR)", "TRANSPY ESPAGNE", "TRANSPY FRANCE"]
|
| 19 |
|
| 20 |
# Initialisation des variables d'état
|
| 21 |
selected_dpt = []
|
|
|
|
| 23 |
selected_sp = []
|
| 24 |
selected_gender = []
|
| 25 |
selected_sites = []
|
| 26 |
+
selected_communes = []
|
| 27 |
selected_dates = [df_controls['DATE'].min(), df_controls['DATE'].max()]
|
| 28 |
dates_gant = [df_controls['DATE'].min(), df_controls['DATE'].max()]
|
| 29 |
df_empty = pd.DataFrame()
|
| 30 |
|
| 31 |
# CONTENU
|
| 32 |
## ROOT PAGE
|
|
|
|
| 33 |
FEDER = "images/FEDER-NA.png"
|
| 34 |
PREFET = "images/Prefet_NA.jpg"
|
| 35 |
VERT = "images/FranceNationVerte.jpg"
|
|
|
|
| 42 |
page1 = file.read()
|
| 43 |
|
| 44 |
## VISUALISATION DES DONNEES D'ANTENNES
|
| 45 |
+
communes = sorted(df_controls['COMMUNE'].unique().tolist())
|
| 46 |
departements = sorted(df_controls['DEPARTEMENT'].unique().tolist())
|
| 47 |
+
species = sorted(df_distances['CODE_ESP'].unique().tolist())
|
| 48 |
+
genders = sorted(df_individus['SEXE'].dropna().unique().tolist())
|
| 49 |
+
sites = sorted(df_controls['LIEU_DIT'].dropna().unique().tolist())
|
| 50 |
dates = [df_controls['DATE'].min(), df_controls['DATE'].max()]
|
| 51 |
|
| 52 |
+
# Callback du sélécteur de sites
|
| 53 |
+
def refresh_sites(state):
|
| 54 |
+
selected_communes = state.selected_communes or []
|
| 55 |
+
|
| 56 |
+
if selected_communes:
|
| 57 |
+
filtered_df = df_controls[df_controls['COMMUNE'].isin(selected_communes)]
|
| 58 |
+
else:
|
| 59 |
+
filtered_df = df_controls
|
| 60 |
+
|
| 61 |
+
state.sites = sorted(filtered_df['LIEU_DIT'].unique().tolist())
|
| 62 |
+
|
| 63 |
m = generate_map(df_empty, df_sites)
|
| 64 |
|
| 65 |
with open("pages/page2.md", "r", encoding = "utf-8") as file:
|
|
|
|
| 91 |
if state.selected_dates and len(state.selected_dates) == 2:
|
| 92 |
start_date = pd.Timestamp(state.selected_dates[0])
|
| 93 |
end_date = pd.Timestamp(state.selected_dates[1])
|
| 94 |
+
df_filtered = df_filtered[(df_filtered['DATE_DEPART'] >= start_date) & (df_filtered['DATE_DEPART'] <= end_date)]
|
| 95 |
|
| 96 |
# Rafraichir la carte
|
| 97 |
state.m = generate_map(df_filtered, df_sites)
|
|
|
|
| 105 |
# Callbacks du diagramme de Gant
|
| 106 |
def update_gant(state):
|
| 107 |
df_filtered_gant = df_controls.copy()
|
| 108 |
+
df_filtered_gant = df_filtered_gant[df_filtered_gant['LIEU_DIT'].isin(liste_sites_antennes)]
|
| 109 |
|
| 110 |
# Convertir les dates sélectionnées en objets Timestamp
|
| 111 |
if state.selected_dpt_gant:
|
|
|
|
| 122 |
|
| 123 |
## STATISTIQUES ANALYTIQUES
|
| 124 |
# Initialisation de tous les plots
|
| 125 |
+
df_controls_valide = df_controls[df_controls['ETUDE'].isin(ETUDE_valides)]
|
| 126 |
+
df_individus_valide = df_individus[df_individus['ETUDE'].isin(ETUDE_valides)]
|
| 127 |
+
|
| 128 |
+
plot_detection_year = detection_by_year(df_controls_valide) # Barplot du nombre de détections par an et par espèce
|
| 129 |
+
plot_capture_year = capture_by_year(df_individus_valide) # Barplot du nombre de captures par an et par espèces
|
| 130 |
+
plot_control_year = control_by_year(df_controls_valide) # Barplot du nombre de contrôles par an et par espèces
|
| 131 |
+
plot_frequencies = detection_frequencies(df_controls_valide) # Courbes de fréquences de détections par jour de l'année et par site
|
| 132 |
+
plot_pie_controled = pie_controled(df_controls_valide) # Pieplot des individus contrôlés
|
| 133 |
+
plot_pie_marked = pie_marked(df_individus_valide) # Pieplot des individus marqués
|
| 134 |
+
plot_top_detection = top_detection(df_controls_valide) # Barplot horizontal des 10 individus les plus détectés
|
| 135 |
+
plot_box_distances = distance_boxplot(df_distances) # Boxplot des distances par espèce
|
| 136 |
|
| 137 |
# Initialisation des variables à plot
|
| 138 |
total_recaptured = df_controls['NUM_PIT'].nunique() # Individus contrôlés
|
| 139 |
total_marked = df_individus['NUM_PIT'].nunique() # Individus marqués
|
| 140 |
sites_capture = df_individus['LIEU_DIT'].nunique() # Sites capturés au moins une fois
|
| 141 |
sites_antennes = df_sites['LIEU_DIT'].nunique() # Sites contrôlés au moins une fois
|
| 142 |
+
transition_table_plot = df_distances[['NUM_PIT', 'CODE_ESP', 'DATE_DEPART', 'SITE_DEPART', 'DATE_ARRIVEE', 'SITE_ARRIVEE', 'DIST_KM']].sort_values(by='DIST_KM', ascending = False)
|
| 143 |
+
transition_table_plot['DIST_KM'] = transition_table_plot['DIST_KM'].round(2)
|
|
|
|
| 144 |
|
| 145 |
with open("pages/page4.md", "r", encoding = "utf-8") as file:
|
| 146 |
page4 = file.read()
|
| 147 |
|
| 148 |
## FICHE SITE
|
| 149 |
# Initialisation du sélecteur et des plots
|
| 150 |
+
selection_fiche = ['Ancienne citerne à eau']
|
| 151 |
df_controls_fiche = df_controls[df_controls['LIEU_DIT'].isin(selection_fiche)]
|
| 152 |
df_individus_fiche = df_individus[df_individus['LIEU_DIT'].isin(selection_fiche)]
|
| 153 |
df_distances_fiche = df_distances[(df_distances['SITE_DEPART'].isin(selection_fiche)) | (df_distances['SITE_ARRIVEE'].isin(selection_fiche))]
|