Spaces:
Sleeping
Sleeping
Update dashboard.py
Browse files- dashboard.py +225 -194
dashboard.py
CHANGED
|
@@ -1,194 +1,225 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import plotly.express as px
|
| 3 |
-
import plotly.graph_objects as go
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
df_filtre
|
| 36 |
-
|
| 37 |
-
df_grouped
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
df_filtre
|
| 65 |
-
|
| 66 |
-
df_grouped
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
df_controls['
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
global_freq =
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
site_data
|
| 117 |
-
site_data =
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
#
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
fig
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
#
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
fig
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import plotly.express as px
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import plotly.io as pio
|
| 5 |
+
|
| 6 |
+
def detection_by_year(df_controls):
|
| 7 |
+
df_controls['YEAR'] = df_controls['DATE'].dt.year
|
| 8 |
+
grouped_data = df_controls.groupby(['YEAR', 'CODE_ESP']).size().reset_index(name = 'Detections')
|
| 9 |
+
|
| 10 |
+
fig = px.bar(grouped_data, x = 'YEAR', y = 'Detections', color = 'CODE_ESP',
|
| 11 |
+
labels = {'Detections': 'Nombre de détections', 'CODE_ESP': 'Espèce'},
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
fig.update_layout(
|
| 15 |
+
height = 400,
|
| 16 |
+
width = 400,
|
| 17 |
+
yaxis_title = 'Nombre de détections',
|
| 18 |
+
xaxis_title = None,
|
| 19 |
+
xaxis = {'type': 'category', 'tickmode': 'linear'}, # Afficher toutes les années
|
| 20 |
+
barmode = 'stack',
|
| 21 |
+
legend = dict(
|
| 22 |
+
bgcolor = 'rgba(0, 0, 0, 0)',
|
| 23 |
+
orientation = 'h', # Légende horizontale
|
| 24 |
+
x = 0.5, # Centrer la légende horizontalement
|
| 25 |
+
y = -0.2, # Placer la légende en dessous de la figure
|
| 26 |
+
xanchor = 'center', # Ancrer la légende au centre
|
| 27 |
+
yanchor = 'top' # Ancrer la légende au-dessus de l'axe x
|
| 28 |
+
),
|
| 29 |
+
margin = dict(b = 100)
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
return fig
|
| 33 |
+
|
| 34 |
+
def capture_by_year(df_captures):
|
| 35 |
+
df_filtre = df_captures.copy()
|
| 36 |
+
df_filtre['YEAR'] = df_filtre['DATE'].dt.year
|
| 37 |
+
df_grouped = df_filtre.groupby(['YEAR', 'CODE_ESP'])['NUM_PIT'].nunique().reset_index()
|
| 38 |
+
df_grouped.rename(columns = {'NUM_PIT': 'Nombre d\'individus uniques'}, inplace = True)
|
| 39 |
+
|
| 40 |
+
fig = px.bar(df_grouped, x = 'YEAR', y = 'Nombre d\'individus uniques', color = 'CODE_ESP',
|
| 41 |
+
labels = {'Nombre d\'individus uniques': 'Nombre d\'individus uniques', 'CODE_ESP': 'Espèce'}
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
fig.update_layout(
|
| 45 |
+
height = 400,
|
| 46 |
+
width = 400,
|
| 47 |
+
yaxis_title = 'Nombre d\'individus uniques',
|
| 48 |
+
xaxis_title = None,
|
| 49 |
+
xaxis = {'type': 'category', 'tickmode': 'linear'}, # Afficher toutes les années
|
| 50 |
+
legend = dict(
|
| 51 |
+
bgcolor ='rgba(0, 0, 0, 0)',
|
| 52 |
+
orientation = 'h', # Légende horizontale
|
| 53 |
+
x = 0.5, # Centrer la légende horizontalement
|
| 54 |
+
y = -0.2, # Placer la légende en dessous de la figure
|
| 55 |
+
xanchor = 'center', # Ancrer la légende au centre
|
| 56 |
+
yanchor = 'top' # Ancrer la légende au-dessus de l'axe x
|
| 57 |
+
),
|
| 58 |
+
margin = dict(b = 100)
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
return fig
|
| 62 |
+
|
| 63 |
+
def control_by_year(df_controls):
|
| 64 |
+
df_filtre = df_controls.copy()
|
| 65 |
+
df_filtre['YEAR'] = df_filtre['DATE'].dt.year
|
| 66 |
+
df_grouped = df_filtre.groupby(['YEAR', 'CODE_ESP'])['NUM_PIT'].nunique().reset_index()
|
| 67 |
+
df_grouped.rename(columns = {'NUM_PIT': 'Nombre d\'individus'}, inplace = True)
|
| 68 |
+
|
| 69 |
+
fig = px.bar(df_grouped, x = 'YEAR', y = 'Nombre d\'individus', color = 'CODE_ESP',
|
| 70 |
+
labels = {'Nombre d\'individus': 'Nombre d\'individus', 'CODE_ESP': 'Espèce'},
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
fig.update_layout(
|
| 74 |
+
height = 400,
|
| 75 |
+
width = 400,
|
| 76 |
+
yaxis_title = 'Nombre d\'individus',
|
| 77 |
+
xaxis_title = None,
|
| 78 |
+
xaxis = {'type': 'category', 'tickmode': 'linear'}, # Afficher toutes les années
|
| 79 |
+
legend = dict(
|
| 80 |
+
bgcolor = 'rgba(0, 0, 0, 0)',
|
| 81 |
+
orientation = 'h', # Légende horizontale
|
| 82 |
+
x = 0.5, # Centrer la légende horizontalement
|
| 83 |
+
y = -0.2, # Placer la légende en dessous de la figure
|
| 84 |
+
xanchor = 'center', # Ancrer la légende au centre
|
| 85 |
+
yanchor = 'top' # Ancrer la légende au-dessus de l'axe x
|
| 86 |
+
),
|
| 87 |
+
margin = dict(b = 100)
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return fig
|
| 91 |
+
|
| 92 |
+
def detection_frequencies(df_controls):
|
| 93 |
+
df_controls['DATE'] = pd.to_datetime(df_controls['DATE'], errors='coerce')
|
| 94 |
+
df_controls['MONTH_DAY'] = df_controls['DATE'].dt.strftime('%m-%d')
|
| 95 |
+
global_freq = df_controls.groupby('MONTH_DAY').size().reset_index(name = 'Global Detections')
|
| 96 |
+
|
| 97 |
+
# Calculer les fréquences par site
|
| 98 |
+
site_freq = df_controls.groupby(['MONTH_DAY', 'LIEU_DIT']).size().reset_index(name = 'Detections')
|
| 99 |
+
sites = site_freq['LIEU_DIT'].unique()
|
| 100 |
+
|
| 101 |
+
# Préparer l'ordre chronologique
|
| 102 |
+
months_days = pd.date_range('2021-01-01', '2021-12-31').strftime('%m-%d')
|
| 103 |
+
global_freq['MONTH_DAY'] = pd.Categorical(global_freq['MONTH_DAY'], categories = months_days, ordered = True)
|
| 104 |
+
global_freq = global_freq.sort_values('MONTH_DAY')
|
| 105 |
+
|
| 106 |
+
# Création du graphique
|
| 107 |
+
fig = go.Figure()
|
| 108 |
+
|
| 109 |
+
if len(site_freq['LIEU_DIT'].unique()) > 1:
|
| 110 |
+
# Ajouter la courbe globale
|
| 111 |
+
fig.add_trace(go.Scatter(x = global_freq['MONTH_DAY'], y = global_freq['Global Detections'],
|
| 112 |
+
mode = 'lines', name = 'Global'))
|
| 113 |
+
|
| 114 |
+
# Ajouter une courbe pour chaque site
|
| 115 |
+
for site in sites:
|
| 116 |
+
site_data = site_freq[site_freq['LIEU_DIT'] == site]
|
| 117 |
+
site_data['MONTH_DAY'] = pd.Categorical(site_data['MONTH_DAY'], categories = months_days, ordered = True)
|
| 118 |
+
site_data = site_data.sort_values('MONTH_DAY')
|
| 119 |
+
fig.add_trace(go.Scatter(x = site_data['MONTH_DAY'], y = site_data['Detections'],
|
| 120 |
+
mode = 'lines', name = site))
|
| 121 |
+
|
| 122 |
+
# Mise à jour du layout
|
| 123 |
+
fig.update_layout(
|
| 124 |
+
xaxis_title = 'Jour de l\'année',
|
| 125 |
+
yaxis_title = 'Nombre de détections',
|
| 126 |
+
xaxis = dict(type = 'category', categoryorder = 'array', categoryarray = [md for md in months_days]),
|
| 127 |
+
legend = dict(bgcolor = 'rgba(0, 0, 0, 0)'),
|
| 128 |
+
#yaxis = dict(range = [0, global_freq['Global Detections'].max() + 10])
|
| 129 |
+
)
|
| 130 |
+
return fig
|
| 131 |
+
|
| 132 |
+
def detection_frequencies_global(df_controls):
|
| 133 |
+
df_controls['DATE'] = pd.to_datetime(df_controls['DATE'], errors='coerce')
|
| 134 |
+
df_controls['MONTH_DAY'] = df_controls['DATE'].dt.strftime('%m-%d')
|
| 135 |
+
global_freq = df_controls.groupby('MONTH_DAY').size().reset_index(name = 'Global Detections')
|
| 136 |
+
|
| 137 |
+
# Calculer les fréquences par site
|
| 138 |
+
site_freq = df_controls.groupby(['MONTH_DAY', 'LIEU_DIT']).size().reset_index(name = 'Detections')
|
| 139 |
+
sites = site_freq['LIEU_DIT'].unique()
|
| 140 |
+
|
| 141 |
+
# Préparer l'ordre chronologique
|
| 142 |
+
months_days = pd.date_range('2021-01-01', '2021-12-31').strftime('%m-%d')
|
| 143 |
+
global_freq['MONTH_DAY'] = pd.Categorical(global_freq['MONTH_DAY'], categories = months_days, ordered = True)
|
| 144 |
+
global_freq = global_freq.sort_values('MONTH_DAY')
|
| 145 |
+
|
| 146 |
+
# Création du graphique
|
| 147 |
+
fig = go.Figure()
|
| 148 |
+
|
| 149 |
+
# Ajouter la courbe globale
|
| 150 |
+
fig.add_trace(go.Scatter(x = global_freq['MONTH_DAY'], y = global_freq['Global Detections'], mode = 'lines', name = 'Global'))
|
| 151 |
+
|
| 152 |
+
# Mise à jour du layout
|
| 153 |
+
fig.update_layout(
|
| 154 |
+
xaxis_title = 'Jour de l\'année',
|
| 155 |
+
yaxis_title = 'Nombre de détections',
|
| 156 |
+
xaxis = dict(type = 'category', categoryorder = 'array', categoryarray = [md for md in months_days]),
|
| 157 |
+
legend = dict(bgcolor = 'rgba(0, 0, 0, 0)'),
|
| 158 |
+
#yaxis = dict(range = [0, global_freq['Global Detections'].max() + 10])
|
| 159 |
+
)
|
| 160 |
+
return fig
|
| 161 |
+
|
| 162 |
+
def pie_controled(df_controls):
|
| 163 |
+
species_counts = df_controls['CODE_ESP'].value_counts().reset_index()
|
| 164 |
+
species_counts.columns = ['Species', 'Count']
|
| 165 |
+
|
| 166 |
+
# Créer un diagramme circulaire
|
| 167 |
+
fig = px.pie(species_counts,
|
| 168 |
+
values = 'Count', names = 'Species',
|
| 169 |
+
color_discrete_sequence = px.colors.qualitative.Pastel,
|
| 170 |
+
hole = 0.5,)
|
| 171 |
+
|
| 172 |
+
# Personnalisation supplémentaire
|
| 173 |
+
fig.update_layout(legend_title_text = 'Espèce',
|
| 174 |
+
showlegend = True,
|
| 175 |
+
legend = dict(bgcolor = 'rgba(0, 0, 0, 0)')
|
| 176 |
+
)
|
| 177 |
+
return fig
|
| 178 |
+
|
| 179 |
+
def pie_marked(df_individus):
|
| 180 |
+
marked_species = df_individus.copy()
|
| 181 |
+
species_counts = marked_species['CODE_ESP'].value_counts().reset_index()
|
| 182 |
+
species_counts.columns = ['Species', 'Count']
|
| 183 |
+
|
| 184 |
+
# Créer un diagramme circulaire
|
| 185 |
+
fig = px.pie(species_counts,
|
| 186 |
+
values = 'Count', names = 'Species',
|
| 187 |
+
color_discrete_sequence = px.colors.qualitative.Pastel,
|
| 188 |
+
hole = 0.5)
|
| 189 |
+
|
| 190 |
+
# Personnalisation supplémentaire
|
| 191 |
+
fig.update_layout(legend_title_text = 'Espèce',
|
| 192 |
+
showlegend = True,
|
| 193 |
+
legend = dict(bgcolor = 'rgba(0, 0, 0, 0)')
|
| 194 |
+
)
|
| 195 |
+
return fig
|
| 196 |
+
|
| 197 |
+
def top_detection(df_controls):
|
| 198 |
+
df_controls['NUM_PIT'] = "n° " + df_controls['NUM_PIT'].astype(str)
|
| 199 |
+
|
| 200 |
+
# Obtenir les dix catégories les plus fréquentes avec leurs occurrences
|
| 201 |
+
top_categories = df_controls['NUM_PIT'].value_counts().head(10)
|
| 202 |
+
|
| 203 |
+
# Créer un DataFrame à partir des dix premières catégories
|
| 204 |
+
df_top_categories = pd.DataFrame({'NUM_PIT': top_categories.index, 'Occurrences': top_categories.values})
|
| 205 |
+
df_top_categories = df_top_categories.sort_values(by = 'Occurrences', ascending = False)
|
| 206 |
+
|
| 207 |
+
# Créer le diagramme en barres horizontales
|
| 208 |
+
fig = px.bar(df_top_categories, x = 'Occurrences', y = 'NUM_PIT', orientation = 'h',
|
| 209 |
+
labels = {'Occurrences': "Nombre d'occurrences", 'NUM_PIT': ''},
|
| 210 |
+
color = 'NUM_PIT', color_discrete_sequence = px.colors.qualitative.Set3)
|
| 211 |
+
|
| 212 |
+
# Ajuster la hauteur en fonction du nombre de catégories (avec une hauteur minimale de 400 pixels)
|
| 213 |
+
bar_height = 50 # Hauteur de chaque barre
|
| 214 |
+
min_height = 400 # Hauteur minimale du graphique
|
| 215 |
+
calculated_height = max(min_height, len(df_top_categories) * bar_height)
|
| 216 |
+
|
| 217 |
+
# Mettre à jour la mise en page avec des marges ajustées
|
| 218 |
+
fig.update_layout(
|
| 219 |
+
height = calculated_height, # Hauteur dynamique
|
| 220 |
+
showlegend = False,
|
| 221 |
+
margin = dict(l = 200), # Augmenter la marge gauche pour mieux lire les annotations
|
| 222 |
+
legend = dict(bgcolor = 'rgba(0, 0, 0, 0)')
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
return fig
|