update table and plots
Browse files- src/components/filters.py +35 -9
- src/components/visualizations.py +224 -124
- src/services/firebase.py +3 -0
src/components/filters.py
CHANGED
|
@@ -12,11 +12,24 @@ def render_grouping_options() -> List[str]:
|
|
| 12 |
"flash_attn",
|
| 13 |
"cache_type_k",
|
| 14 |
"cache_type_v",
|
| 15 |
-
"PP
|
| 16 |
-
"TG
|
|
|
|
|
|
|
|
|
|
| 17 |
]
|
| 18 |
|
| 19 |
-
default_groups = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
selected_groups = st.multiselect(
|
| 22 |
"Group Results By",
|
|
@@ -39,10 +52,12 @@ def render_column_visibility() -> Set[str]:
|
|
| 39 |
"Memory Usage (%)",
|
| 40 |
],
|
| 41 |
"Benchmark Info": [
|
| 42 |
-
"PP
|
| 43 |
-
"TG
|
| 44 |
-
"Prompt Processing",
|
| 45 |
-
"
|
|
|
|
|
|
|
| 46 |
],
|
| 47 |
"Model Info": [
|
| 48 |
"Model",
|
|
@@ -54,6 +69,9 @@ def render_column_visibility() -> Set[str]:
|
|
| 54 |
"flash_attn",
|
| 55 |
"cache_type_k",
|
| 56 |
"cache_type_v",
|
|
|
|
|
|
|
|
|
|
| 57 |
],
|
| 58 |
}
|
| 59 |
|
|
@@ -63,8 +81,16 @@ def render_column_visibility() -> Set[str]:
|
|
| 63 |
"Platform",
|
| 64 |
"Model",
|
| 65 |
"Model Size",
|
| 66 |
-
"Prompt Processing",
|
| 67 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
}
|
| 69 |
|
| 70 |
with st.expander("Column Visibility", expanded=False):
|
|
|
|
| 12 |
"flash_attn",
|
| 13 |
"cache_type_k",
|
| 14 |
"cache_type_v",
|
| 15 |
+
"PP Config",
|
| 16 |
+
"TG Config",
|
| 17 |
+
"n_context",
|
| 18 |
+
"n_batch",
|
| 19 |
+
"n_ubatch",
|
| 20 |
]
|
| 21 |
|
| 22 |
+
default_groups = [
|
| 23 |
+
"Model ID",
|
| 24 |
+
"Device",
|
| 25 |
+
"Platform",
|
| 26 |
+
"n_threads",
|
| 27 |
+
"flash_attn",
|
| 28 |
+
"cache_type_k",
|
| 29 |
+
"cache_type_v",
|
| 30 |
+
"PP Config",
|
| 31 |
+
"TG Config",
|
| 32 |
+
]
|
| 33 |
|
| 34 |
selected_groups = st.multiselect(
|
| 35 |
"Group Results By",
|
|
|
|
| 52 |
"Memory Usage (%)",
|
| 53 |
],
|
| 54 |
"Benchmark Info": [
|
| 55 |
+
"PP Config",
|
| 56 |
+
"TG Config",
|
| 57 |
+
"Prompt Processing (mean)",
|
| 58 |
+
"Prompt Processing (std)",
|
| 59 |
+
"Token Generation (mean)",
|
| 60 |
+
"Token Generation (std)",
|
| 61 |
],
|
| 62 |
"Model Info": [
|
| 63 |
"Model",
|
|
|
|
| 69 |
"flash_attn",
|
| 70 |
"cache_type_k",
|
| 71 |
"cache_type_v",
|
| 72 |
+
"n_context",
|
| 73 |
+
"n_batch",
|
| 74 |
+
"n_ubatch",
|
| 75 |
],
|
| 76 |
}
|
| 77 |
|
|
|
|
| 81 |
"Platform",
|
| 82 |
"Model",
|
| 83 |
"Model Size",
|
| 84 |
+
"Prompt Processing (mean)",
|
| 85 |
+
"Prompt Processing (std)",
|
| 86 |
+
"Token Generation (mean)",
|
| 87 |
+
"Token Generation (std)",
|
| 88 |
+
"n_threads",
|
| 89 |
+
"flash_attn",
|
| 90 |
+
"cache_type_k",
|
| 91 |
+
"cache_type_v",
|
| 92 |
+
"PP Config",
|
| 93 |
+
"TG Config",
|
| 94 |
}
|
| 95 |
|
| 96 |
with st.expander("Column Visibility", expanded=False):
|
src/components/visualizations.py
CHANGED
|
@@ -4,11 +4,16 @@ import pandas as pd
|
|
| 4 |
from typing import Optional, Dict, List, Set
|
| 5 |
|
| 6 |
|
| 7 |
-
def create_performance_plot(
|
|
|
|
|
|
|
| 8 |
"""Create a performance comparison plot"""
|
| 9 |
if df.empty:
|
| 10 |
return None
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
fig = px.bar(
|
| 13 |
df,
|
| 14 |
x="Device",
|
|
@@ -17,11 +22,11 @@ def create_performance_plot(df: pd.DataFrame, metric: str, title: str):
|
|
| 17 |
title=title,
|
| 18 |
template="plotly_white",
|
| 19 |
barmode="group",
|
| 20 |
-
hover_data=
|
| 21 |
)
|
| 22 |
fig.update_layout(
|
| 23 |
xaxis_title="Device",
|
| 24 |
-
yaxis_title="
|
| 25 |
legend_title="Platform",
|
| 26 |
plot_bgcolor="white",
|
| 27 |
height=400,
|
|
@@ -34,14 +39,16 @@ def filter_dataframe(df: pd.DataFrame, filters: Dict) -> pd.DataFrame:
|
|
| 34 |
if df.empty:
|
| 35 |
return df
|
| 36 |
|
|
|
|
|
|
|
| 37 |
# Basic filters
|
| 38 |
basic_filters = filters["basic_filters"]
|
| 39 |
if basic_filters["model"] != "All":
|
| 40 |
-
|
| 41 |
if basic_filters["platform"] != "All":
|
| 42 |
-
|
| 43 |
if basic_filters["device"] != "All":
|
| 44 |
-
|
| 45 |
|
| 46 |
# Benchmark configuration filters
|
| 47 |
benchmark_config = filters["benchmark_config"]
|
|
@@ -49,45 +56,44 @@ def filter_dataframe(df: pd.DataFrame, filters: Dict) -> pd.DataFrame:
|
|
| 49 |
pp_min, pp_max = benchmark_config["pp_range"]
|
| 50 |
tg_min, tg_max = benchmark_config["tg_range"]
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
df["PP Value"] = df["Benchmark"].apply(
|
| 55 |
-
lambda x: int(x.split("pp: ")[1].split(",")[0])
|
| 56 |
-
)
|
| 57 |
-
if "TG Value" not in df.columns:
|
| 58 |
-
df["TG Value"] = df["Benchmark"].apply(
|
| 59 |
-
lambda x: int(x.split("tg: ")[1].split(")")[0])
|
| 60 |
-
)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
(
|
| 64 |
-
& (
|
| 65 |
-
& (
|
| 66 |
-
& (
|
| 67 |
]
|
| 68 |
|
| 69 |
# Advanced settings filters
|
| 70 |
advanced = filters["advanced_settings"]
|
| 71 |
if advanced["n_threads"]:
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
if advanced["flash_attn"]:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
if advanced["cache_type"]:
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
]
|
| 86 |
|
| 87 |
if advanced["max_memory_usage"] < 100:
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
return
|
| 91 |
|
| 92 |
|
| 93 |
def render_performance_plots(df: pd.DataFrame, filters: Dict):
|
|
@@ -102,15 +108,15 @@ def render_performance_plots(df: pd.DataFrame, filters: Dict):
|
|
| 102 |
st.warning("No data matches the selected filters for plotting.")
|
| 103 |
return
|
| 104 |
|
| 105 |
-
# Extract PP/TG values if not already present
|
| 106 |
-
if "PP Value" not in filtered_df.columns:
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
if "TG Value" not in filtered_df.columns:
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
# Extract initSettings if not already present
|
| 116 |
if "n_threads" not in filtered_df.columns:
|
|
@@ -127,30 +133,83 @@ def render_performance_plots(df: pd.DataFrame, filters: Dict):
|
|
| 127 |
lambda x: x.get("cache_type_v")
|
| 128 |
)
|
| 129 |
|
| 130 |
-
#
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
)
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
col1, col2 = st.columns(2)
|
| 149 |
with col1:
|
| 150 |
fig1 = create_performance_plot(
|
| 151 |
plot_group,
|
| 152 |
-
"
|
| 153 |
-
f"Prompt Processing
|
|
|
|
| 154 |
)
|
| 155 |
if fig1:
|
| 156 |
st.plotly_chart(fig1, use_container_width=True)
|
|
@@ -158,8 +217,9 @@ def render_performance_plots(df: pd.DataFrame, filters: Dict):
|
|
| 158 |
with col2:
|
| 159 |
fig2 = create_performance_plot(
|
| 160 |
plot_group,
|
| 161 |
-
"
|
| 162 |
-
f"Token Generation
|
|
|
|
| 163 |
)
|
| 164 |
if fig2:
|
| 165 |
st.plotly_chart(fig2, use_container_width=True)
|
|
@@ -177,49 +237,46 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
|
| 177 |
st.warning("No data matches the selected filters.")
|
| 178 |
return
|
| 179 |
|
| 180 |
-
# Extract settings from benchmark results
|
| 181 |
-
filtered_df["PP Value"] = filtered_df["Benchmark"].apply(
|
| 182 |
-
lambda x: int(x.split("pp: ")[1].split(",")[0])
|
| 183 |
-
)
|
| 184 |
-
filtered_df["TG Value"] = filtered_df["Benchmark"].apply(
|
| 185 |
-
lambda x: int(x.split("tg: ")[1].split(")")[0])
|
| 186 |
-
)
|
| 187 |
-
|
| 188 |
-
# Extract initSettings
|
| 189 |
-
filtered_df["n_threads"] = filtered_df["initSettings"].apply(
|
| 190 |
-
lambda x: x.get("n_threads")
|
| 191 |
-
)
|
| 192 |
-
filtered_df["flash_attn"] = filtered_df["initSettings"].apply(
|
| 193 |
-
lambda x: x.get("flash_attn")
|
| 194 |
-
)
|
| 195 |
-
filtered_df["cache_type_k"] = filtered_df["initSettings"].apply(
|
| 196 |
-
lambda x: x.get("cache_type_k")
|
| 197 |
-
)
|
| 198 |
-
filtered_df["cache_type_v"] = filtered_df["initSettings"].apply(
|
| 199 |
-
lambda x: x.get("cache_type_v")
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
# Group by selected columns
|
| 203 |
grouping_cols = filters["grouping"]
|
| 204 |
if not grouping_cols:
|
| 205 |
grouping_cols = ["Model ID", "Device", "Platform"] # Default grouping
|
| 206 |
|
|
|
|
| 207 |
agg_dict = {
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
"cache_type_k": "first",
|
| 220 |
-
"cache_type_v": "first",
|
| 221 |
}
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
grouped_df = filtered_df.groupby(grouping_cols).agg(agg_dict).reset_index()
|
| 224 |
|
| 225 |
# Flatten column names
|
|
@@ -227,12 +284,6 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
|
| 227 |
col[0] if col[1] == "" else f"{col[0]} ({col[1]})" for col in grouped_df.columns
|
| 228 |
]
|
| 229 |
|
| 230 |
-
# Sort by Model Size, PP Value, and TG time
|
| 231 |
-
grouped_df = grouped_df.sort_values(
|
| 232 |
-
by=["Model Size (first)", "PP Value (first)", "Token Generation (mean)"],
|
| 233 |
-
ascending=[False, True, True],
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
# Round numeric columns
|
| 237 |
numeric_cols = [
|
| 238 |
col
|
|
@@ -241,17 +292,41 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
|
| 241 |
]
|
| 242 |
grouped_df[numeric_cols] = grouped_df[numeric_cols].round(2)
|
| 243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
# Rename columns for display
|
| 245 |
column_mapping = {
|
| 246 |
-
"Prompt Processing (mean)": "PP Avg (
|
| 247 |
-
"Prompt Processing (std)": "PP Std",
|
| 248 |
"Prompt Processing (count)": "Runs",
|
| 249 |
-
"Token Generation (mean)": "TG Avg (
|
| 250 |
-
"Token Generation (std)": "TG Std",
|
| 251 |
"Memory Usage (%) (mean)": "Memory Usage (%)",
|
| 252 |
"Memory Usage (GB) (mean)": "Memory Usage (GB)",
|
| 253 |
-
"PP
|
| 254 |
-
"TG
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
}
|
| 256 |
grouped_df = grouped_df.rename(columns=column_mapping)
|
| 257 |
|
|
@@ -262,38 +337,63 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
|
| 262 |
column_name_mapping = {
|
| 263 |
"Device": "Device",
|
| 264 |
"Platform": "Platform",
|
| 265 |
-
"CPU Cores": "CPU Cores
|
| 266 |
-
"Total Memory (GB)": "Total Memory (GB)
|
| 267 |
"Memory Usage (%)": "Memory Usage (%)",
|
| 268 |
-
"PP
|
| 269 |
-
"TG
|
| 270 |
-
"Prompt Processing": "PP Avg (
|
| 271 |
-
"Token Generation": "TG Avg (
|
|
|
|
|
|
|
| 272 |
"Model": "Model ID",
|
| 273 |
-
"Model Size": "Model Size
|
| 274 |
"Model ID": "Model ID",
|
| 275 |
-
"n_threads": "n_threads
|
| 276 |
-
"flash_attn": "flash_attn
|
| 277 |
-
"cache_type_k": "cache_type_k
|
| 278 |
-
"cache_type_v": "cache_type_v
|
|
|
|
|
|
|
|
|
|
| 279 |
}
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
else:
|
| 286 |
# Default columns if none selected
|
| 287 |
display_cols = [
|
| 288 |
"Device",
|
| 289 |
"Platform",
|
| 290 |
"Model ID",
|
| 291 |
-
"Model Size
|
| 292 |
"PP Avg (ms)",
|
| 293 |
"TG Avg (ms)",
|
| 294 |
"Memory Usage (%)",
|
| 295 |
]
|
| 296 |
|
|
|
|
|
|
|
|
|
|
| 297 |
# Display the filtered and grouped table
|
| 298 |
st.dataframe(
|
| 299 |
grouped_df[display_cols],
|
|
|
|
| 4 |
from typing import Optional, Dict, List, Set
|
| 5 |
|
| 6 |
|
| 7 |
+
def create_performance_plot(
|
| 8 |
+
df: pd.DataFrame, metric: str, title: str, hover_data: List[str] = None
|
| 9 |
+
):
|
| 10 |
"""Create a performance comparison plot"""
|
| 11 |
if df.empty:
|
| 12 |
return None
|
| 13 |
|
| 14 |
+
if hover_data is None:
|
| 15 |
+
hover_data = ["CPU Cores", "Memory Usage (GB)"]
|
| 16 |
+
|
| 17 |
fig = px.bar(
|
| 18 |
df,
|
| 19 |
x="Device",
|
|
|
|
| 22 |
title=title,
|
| 23 |
template="plotly_white",
|
| 24 |
barmode="group",
|
| 25 |
+
hover_data=hover_data,
|
| 26 |
)
|
| 27 |
fig.update_layout(
|
| 28 |
xaxis_title="Device",
|
| 29 |
+
yaxis_title="Token/sec",
|
| 30 |
legend_title="Platform",
|
| 31 |
plot_bgcolor="white",
|
| 32 |
height=400,
|
|
|
|
| 39 |
if df.empty:
|
| 40 |
return df
|
| 41 |
|
| 42 |
+
filtered_df = df.copy()
|
| 43 |
+
|
| 44 |
# Basic filters
|
| 45 |
basic_filters = filters["basic_filters"]
|
| 46 |
if basic_filters["model"] != "All":
|
| 47 |
+
filtered_df = filtered_df[filtered_df["Model ID"] == basic_filters["model"]]
|
| 48 |
if basic_filters["platform"] != "All":
|
| 49 |
+
filtered_df = filtered_df[filtered_df["Platform"] == basic_filters["platform"]]
|
| 50 |
if basic_filters["device"] != "All":
|
| 51 |
+
filtered_df = filtered_df[filtered_df["Device"] == basic_filters["device"]]
|
| 52 |
|
| 53 |
# Benchmark configuration filters
|
| 54 |
benchmark_config = filters["benchmark_config"]
|
|
|
|
| 56 |
pp_min, pp_max = benchmark_config["pp_range"]
|
| 57 |
tg_min, tg_max = benchmark_config["tg_range"]
|
| 58 |
|
| 59 |
+
pp_values = filtered_df["PP Config"]
|
| 60 |
+
tg_values = filtered_df["TG Config"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
filtered_df = filtered_df[
|
| 63 |
+
(pp_values >= pp_min)
|
| 64 |
+
& (pp_values <= pp_max)
|
| 65 |
+
& (tg_values >= tg_min)
|
| 66 |
+
& (tg_values <= tg_max)
|
| 67 |
]
|
| 68 |
|
| 69 |
# Advanced settings filters
|
| 70 |
advanced = filters["advanced_settings"]
|
| 71 |
if advanced["n_threads"]:
|
| 72 |
+
n_threads = filtered_df["initSettings"].apply(lambda x: x.get("n_threads"))
|
| 73 |
+
filtered_df = filtered_df[n_threads.isin(advanced["n_threads"])]
|
| 74 |
|
| 75 |
if advanced["flash_attn"]:
|
| 76 |
+
flash_attn = filtered_df["initSettings"].apply(lambda x: x.get("flash_attn"))
|
| 77 |
+
filtered_df = filtered_df[flash_attn.isin(advanced["flash_attn"])]
|
| 78 |
|
| 79 |
if advanced["cache_type"]:
|
| 80 |
+
cache_type_k = filtered_df["initSettings"].apply(
|
| 81 |
+
lambda x: x.get("cache_type_k")
|
| 82 |
+
)
|
| 83 |
+
cache_type_v = filtered_df["initSettings"].apply(
|
| 84 |
+
lambda x: x.get("cache_type_v")
|
| 85 |
+
)
|
| 86 |
+
filtered_df = filtered_df[
|
| 87 |
+
(cache_type_k.isin(advanced["cache_type"]))
|
| 88 |
+
& (cache_type_v.isin(advanced["cache_type"]))
|
| 89 |
]
|
| 90 |
|
| 91 |
if advanced["max_memory_usage"] < 100:
|
| 92 |
+
filtered_df = filtered_df[
|
| 93 |
+
filtered_df["Memory Usage (%)"] <= advanced["max_memory_usage"]
|
| 94 |
+
]
|
| 95 |
|
| 96 |
+
return filtered_df
|
| 97 |
|
| 98 |
|
| 99 |
def render_performance_plots(df: pd.DataFrame, filters: Dict):
|
|
|
|
| 108 |
st.warning("No data matches the selected filters for plotting.")
|
| 109 |
return
|
| 110 |
|
| 111 |
+
## # Extract PP/TG values if not already present
|
| 112 |
+
## if "PP Value" not in filtered_df.columns:
|
| 113 |
+
## filtered_df["PP Value"] = filtered_df["Benchmark"].apply(
|
| 114 |
+
## lambda x: int(x.split("pp: ")[1].split(",")[0])
|
| 115 |
+
## )
|
| 116 |
+
## if "TG Value" not in filtered_df.columns:
|
| 117 |
+
## filtered_df["TG Value"] = filtered_df["Benchmark"].apply(
|
| 118 |
+
## lambda x: int(x.split("tg: ")[1].split(")")[0])
|
| 119 |
+
## )
|
| 120 |
|
| 121 |
# Extract initSettings if not already present
|
| 122 |
if "n_threads" not in filtered_df.columns:
|
|
|
|
| 133 |
lambda x: x.get("cache_type_v")
|
| 134 |
)
|
| 135 |
|
| 136 |
+
# Build aggregation dictionary based on available columns
|
| 137 |
+
agg_dict = {}
|
| 138 |
+
|
| 139 |
+
# Always include performance metrics
|
| 140 |
+
agg_dict.update(
|
| 141 |
+
{
|
| 142 |
+
"Prompt Processing": "mean",
|
| 143 |
+
"Token Generation": "mean",
|
| 144 |
+
}
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# Include memory metrics if available
|
| 148 |
+
if "Memory Usage (%)" in filtered_df.columns:
|
| 149 |
+
agg_dict["Memory Usage (%)"] = "mean"
|
| 150 |
+
if "Memory Usage (GB)" in filtered_df.columns:
|
| 151 |
+
agg_dict["Memory Usage (GB)"] = "mean"
|
| 152 |
+
|
| 153 |
+
# Include device info if available
|
| 154 |
+
if "CPU Cores" in filtered_df.columns:
|
| 155 |
+
agg_dict["CPU Cores"] = "first"
|
| 156 |
+
|
| 157 |
+
# Include config values
|
| 158 |
+
agg_dict.update(
|
| 159 |
+
{
|
| 160 |
+
"PP Config": "first",
|
| 161 |
+
"TG Config": "first",
|
| 162 |
+
}
|
| 163 |
)
|
| 164 |
|
| 165 |
+
# Group by device and platform for plotting
|
| 166 |
+
plot_group = filtered_df.groupby(["Device", "Platform"]).agg(agg_dict).reset_index()
|
| 167 |
+
|
| 168 |
+
# Flatten column names and rename them
|
| 169 |
+
# plot_group.columns = [
|
| 170 |
+
# col[0] if col[1] == "" else f"{col[0]} ({col[1]})" for col in plot_group.columns
|
| 171 |
+
# ]
|
| 172 |
+
# print("plot_group2:", plot_group)
|
| 173 |
+
|
| 174 |
+
# Rename columns for display
|
| 175 |
+
column_mapping = {
|
| 176 |
+
"Prompt Processing": "PP Avg (t/s)",
|
| 177 |
+
#"Prompt Processing (std)": "PP Std (t/s)",
|
| 178 |
+
"Prompt Processing (count)": "Runs",
|
| 179 |
+
"Token Generation": "TG Avg (t/s)",
|
| 180 |
+
#"Token Generation (std)": "TG Std (t/s)",
|
| 181 |
+
"Memory Usage (%) (mean)": "Memory Usage (%)",
|
| 182 |
+
"Memory Usage (GB) (mean)": "Memory Usage (GB)",
|
| 183 |
+
"PP Config (first)": "PP Config",
|
| 184 |
+
"TG Config (first)": "TG Config",
|
| 185 |
+
"Model Size (first)": "Model Size",
|
| 186 |
+
"CPU Cores (first)": "CPU Cores",
|
| 187 |
+
"Total Memory (GB) (first)": "Total Memory (GB)",
|
| 188 |
+
"n_threads (first)": "n_threads",
|
| 189 |
+
"flash_attn (first)": "flash_attn",
|
| 190 |
+
"cache_type_k (first)": "cache_type_k",
|
| 191 |
+
"cache_type_v (first)": "cache_type_v",
|
| 192 |
+
"n_context (first)": "n_context",
|
| 193 |
+
"n_batch (first)": "n_batch",
|
| 194 |
+
"n_ubatch (first)": "n_ubatch",
|
| 195 |
+
}
|
| 196 |
+
plot_group = plot_group.rename(columns=column_mapping)
|
| 197 |
+
|
| 198 |
+
# Define hover data based on available columns
|
| 199 |
+
hover_data = []
|
| 200 |
+
if "CPU Cores" in plot_group.columns:
|
| 201 |
+
hover_data.append("CPU Cores")
|
| 202 |
+
if "Memory Usage (GB)" in plot_group.columns:
|
| 203 |
+
hover_data.append("Memory Usage (GB)")
|
| 204 |
+
|
| 205 |
+
# Create plots
|
| 206 |
col1, col2 = st.columns(2)
|
| 207 |
with col1:
|
| 208 |
fig1 = create_performance_plot(
|
| 209 |
plot_group,
|
| 210 |
+
"PP Avg (t/s)",
|
| 211 |
+
f"Prompt Processing (PP: {plot_group['PP Config'].iloc[0]})",
|
| 212 |
+
hover_data=hover_data,
|
| 213 |
)
|
| 214 |
if fig1:
|
| 215 |
st.plotly_chart(fig1, use_container_width=True)
|
|
|
|
| 217 |
with col2:
|
| 218 |
fig2 = create_performance_plot(
|
| 219 |
plot_group,
|
| 220 |
+
"TG Avg (t/s)",
|
| 221 |
+
f"Token Generation (TG: {plot_group['TG Config'].iloc[0]})",
|
| 222 |
+
hover_data=hover_data,
|
| 223 |
)
|
| 224 |
if fig2:
|
| 225 |
st.plotly_chart(fig2, use_container_width=True)
|
|
|
|
| 237 |
st.warning("No data matches the selected filters.")
|
| 238 |
return
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
# Group by selected columns
|
| 241 |
grouping_cols = filters["grouping"]
|
| 242 |
if not grouping_cols:
|
| 243 |
grouping_cols = ["Model ID", "Device", "Platform"] # Default grouping
|
| 244 |
|
| 245 |
+
# Define aggregations (excluding grouping columns)
|
| 246 |
agg_dict = {
|
| 247 |
+
col: agg
|
| 248 |
+
for col, agg in {
|
| 249 |
+
"Prompt Processing": ["mean", "std"],
|
| 250 |
+
"Token Generation": ["mean", "std"],
|
| 251 |
+
#"Memory Usage (%)": "mean",
|
| 252 |
+
"Memory Usage (GB)": "mean", # For a given model, device, platform, mem should be the same.
|
| 253 |
+
"Total Memory (GB)": "first", # For a given model, device, platform, mem should be the same.
|
| 254 |
+
"CPU Cores": "first", # For a given model, device, platform, cpu cores should be the same.
|
| 255 |
+
"Model Size": "first", # model size should be the same for all.
|
| 256 |
+
}.items()
|
| 257 |
+
if col not in grouping_cols
|
|
|
|
|
|
|
| 258 |
}
|
| 259 |
|
| 260 |
+
# Extract initSettings if needed
|
| 261 |
+
init_settings_cols = {
|
| 262 |
+
"n_threads": "n_threads",
|
| 263 |
+
"flash_attn": "flash_attn",
|
| 264 |
+
"cache_type_k": "cache_type_k",
|
| 265 |
+
"cache_type_v": "cache_type_v",
|
| 266 |
+
"n_context": "n_context",
|
| 267 |
+
"n_batch": "n_batch",
|
| 268 |
+
"n_ubatch": "n_ubatch",
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
for col, setting in init_settings_cols.items():
|
| 272 |
+
if col not in filtered_df.columns:
|
| 273 |
+
filtered_df[col] = filtered_df["initSettings"].apply(
|
| 274 |
+
lambda x: x.get(setting)
|
| 275 |
+
)
|
| 276 |
+
if col not in grouping_cols:
|
| 277 |
+
agg_dict[col] = "first"
|
| 278 |
+
|
| 279 |
+
# Group and aggregate
|
| 280 |
grouped_df = filtered_df.groupby(grouping_cols).agg(agg_dict).reset_index()
|
| 281 |
|
| 282 |
# Flatten column names
|
|
|
|
| 284 |
col[0] if col[1] == "" else f"{col[0]} ({col[1]})" for col in grouped_df.columns
|
| 285 |
]
|
| 286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
# Round numeric columns
|
| 288 |
numeric_cols = [
|
| 289 |
col
|
|
|
|
| 292 |
]
|
| 293 |
grouped_df[numeric_cols] = grouped_df[numeric_cols].round(2)
|
| 294 |
|
| 295 |
+
# Sort using the actual column names we have
|
| 296 |
+
sort_cols = []
|
| 297 |
+
if "Model Size (first)" in grouped_df.columns:
|
| 298 |
+
sort_cols.append("Model Size (first)")
|
| 299 |
+
if "PP Config (first)" in grouped_df.columns:
|
| 300 |
+
sort_cols.append("PP Config (first)")
|
| 301 |
+
if "Token Generation (mean)" in grouped_df.columns:
|
| 302 |
+
sort_cols.append("Token Generation (mean)")
|
| 303 |
+
|
| 304 |
+
if sort_cols: # Only sort if we have columns to sort by
|
| 305 |
+
grouped_df = grouped_df.sort_values(
|
| 306 |
+
by=sort_cols, ascending=[False] + [True] * (len(sort_cols) - 1)
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
# Rename columns for display
|
| 310 |
column_mapping = {
|
| 311 |
+
"Prompt Processing (mean)": "PP Avg (t/s)",
|
| 312 |
+
"Prompt Processing (std)": "PP Std (t/s)",
|
| 313 |
"Prompt Processing (count)": "Runs",
|
| 314 |
+
"Token Generation (mean)": "TG Avg (t/s)",
|
| 315 |
+
"Token Generation (std)": "TG Std (t/s)",
|
| 316 |
"Memory Usage (%) (mean)": "Memory Usage (%)",
|
| 317 |
"Memory Usage (GB) (mean)": "Memory Usage (GB)",
|
| 318 |
+
"PP Config (first)": "PP Config",
|
| 319 |
+
"TG Config (first)": "TG Config",
|
| 320 |
+
"Model Size (first)": "Model Size",
|
| 321 |
+
"CPU Cores (first)": "CPU Cores",
|
| 322 |
+
"Total Memory (GB) (first)": "Total Memory (GB)",
|
| 323 |
+
"n_threads (first)": "n_threads",
|
| 324 |
+
"flash_attn (first)": "flash_attn",
|
| 325 |
+
"cache_type_k (first)": "cache_type_k",
|
| 326 |
+
"cache_type_v (first)": "cache_type_v",
|
| 327 |
+
"n_context (first)": "n_context",
|
| 328 |
+
"n_batch (first)": "n_batch",
|
| 329 |
+
"n_ubatch (first)": "n_ubatch",
|
| 330 |
}
|
| 331 |
grouped_df = grouped_df.rename(columns=column_mapping)
|
| 332 |
|
|
|
|
| 337 |
column_name_mapping = {
|
| 338 |
"Device": "Device",
|
| 339 |
"Platform": "Platform",
|
| 340 |
+
"CPU Cores": "CPU Cores",
|
| 341 |
+
"Total Memory (GB)": "Total Memory (GB)",
|
| 342 |
"Memory Usage (%)": "Memory Usage (%)",
|
| 343 |
+
"PP Config": "PP Config",
|
| 344 |
+
"TG Config": "TG Config",
|
| 345 |
+
"Prompt Processing (mean)": "PP Avg (t/s)",
|
| 346 |
+
"Token Generation (mean)": "TG Avg (t/s)",
|
| 347 |
+
"Prompt Processing (std)": "PP Std (t/s)",
|
| 348 |
+
"Token Generation (std)": "TG Std (t/s)",
|
| 349 |
"Model": "Model ID",
|
| 350 |
+
"Model Size": "Model Size",
|
| 351 |
"Model ID": "Model ID",
|
| 352 |
+
"n_threads": "n_threads",
|
| 353 |
+
"flash_attn": "flash_attn",
|
| 354 |
+
"cache_type_k": "cache_type_k",
|
| 355 |
+
"cache_type_v": "cache_type_v",
|
| 356 |
+
"n_context": "n_context",
|
| 357 |
+
"n_batch": "n_batch",
|
| 358 |
+
"n_ubatch": "n_ubatch",
|
| 359 |
}
|
| 360 |
+
|
| 361 |
+
# Convert visible columns and grouping columns to their mapped names
|
| 362 |
+
mapped_visible = {column_name_mapping.get(col, col) for col in visible_cols}
|
| 363 |
+
mapped_grouping = {
|
| 364 |
+
column_name_mapping.get(col, col) for col in filters["grouping"]
|
| 365 |
+
}
|
| 366 |
+
|
| 367 |
+
# Combine both sets to get unique columns
|
| 368 |
+
all_cols = mapped_visible | mapped_grouping
|
| 369 |
+
|
| 370 |
+
# Create final display columns list while preserving grouping columns order
|
| 371 |
+
display_cols = []
|
| 372 |
+
|
| 373 |
+
# First add grouping columns in their original order
|
| 374 |
+
for col in filters["grouping"]:
|
| 375 |
+
mapped_col = column_name_mapping.get(col, col)
|
| 376 |
+
if mapped_col in all_cols:
|
| 377 |
+
display_cols.append(mapped_col)
|
| 378 |
+
all_cols.remove(mapped_col)
|
| 379 |
+
|
| 380 |
+
# Then add remaining columns
|
| 381 |
+
display_cols.extend(sorted(all_cols))
|
| 382 |
else:
|
| 383 |
# Default columns if none selected
|
| 384 |
display_cols = [
|
| 385 |
"Device",
|
| 386 |
"Platform",
|
| 387 |
"Model ID",
|
| 388 |
+
"Model Size",
|
| 389 |
"PP Avg (ms)",
|
| 390 |
"TG Avg (ms)",
|
| 391 |
"Memory Usage (%)",
|
| 392 |
]
|
| 393 |
|
| 394 |
+
# Ensure all display columns exist in the DataFrame
|
| 395 |
+
display_cols = [col for col in display_cols if col in grouped_df.columns]
|
| 396 |
+
|
| 397 |
# Display the filtered and grouped table
|
| 398 |
st.dataframe(
|
| 399 |
grouped_df[display_cols],
|
src/services/firebase.py
CHANGED
|
@@ -68,6 +68,8 @@ def format_leaderboard_data(submissions: List[dict]) -> pd.DataFrame:
|
|
| 68 |
"Device": device_info.get("model", "Unknown"),
|
| 69 |
"Platform": device_info.get("systemName", "Unknown"),
|
| 70 |
"Benchmark": f"{benchmark_result.get('config', {}).get('label', 'Unknown')} (pp: {benchmark_result.get('config', {}).get('pp', 'N/A')}, tg: {benchmark_result.get('config', {}).get('tg', 'N/A')})",
|
|
|
|
|
|
|
| 71 |
"Model": benchmark_result.get("modelName", "Unknown"),
|
| 72 |
"Model Size": format_params_in_b(
|
| 73 |
benchmark_result.get("modelNParams", 0)
|
|
@@ -97,6 +99,7 @@ def format_leaderboard_data(submissions: List[dict]) -> pd.DataFrame:
|
|
| 97 |
"Model ID": benchmark_result.get("modelId", "Unknown"),
|
| 98 |
"OID": benchmark_result.get("oid"),
|
| 99 |
"initSettings": benchmark_result.get("initSettings"),
|
|
|
|
| 100 |
}
|
| 101 |
)
|
| 102 |
except Exception as e:
|
|
|
|
| 68 |
"Device": device_info.get("model", "Unknown"),
|
| 69 |
"Platform": device_info.get("systemName", "Unknown"),
|
| 70 |
"Benchmark": f"{benchmark_result.get('config', {}).get('label', 'Unknown')} (pp: {benchmark_result.get('config', {}).get('pp', 'N/A')}, tg: {benchmark_result.get('config', {}).get('tg', 'N/A')})",
|
| 71 |
+
"PP Config": benchmark_result.get("config", {}).get("pp", "N/A"),
|
| 72 |
+
"TG Config": benchmark_result.get("config", {}).get("tg", "N/A"),
|
| 73 |
"Model": benchmark_result.get("modelName", "Unknown"),
|
| 74 |
"Model Size": format_params_in_b(
|
| 75 |
benchmark_result.get("modelNParams", 0)
|
|
|
|
| 99 |
"Model ID": benchmark_result.get("modelId", "Unknown"),
|
| 100 |
"OID": benchmark_result.get("oid"),
|
| 101 |
"initSettings": benchmark_result.get("initSettings"),
|
| 102 |
+
"Version": device_info.get("version", "Unknown"),
|
| 103 |
}
|
| 104 |
)
|
| 105 |
except Exception as e:
|