Spaces:
Running
Running
Amlan-109
feat: Initial commit of LocalAI Amlan Edition with premium branding and personalization
750bbe6
| #!/usr/bin/env python3 | |
| """ | |
| This is an extra gRPC server of LocalAI for WhisperX transcription | |
| with speaker diarization, word-level timestamps, and forced alignment. | |
| """ | |
| from concurrent import futures | |
| import time | |
| import argparse | |
| import signal | |
| import sys | |
| import os | |
| import backend_pb2 | |
| import backend_pb2_grpc | |
| import grpc | |
| _ONE_DAY_IN_SECONDS = 60 * 60 * 24 | |
| # If MAX_WORKERS are specified in the environment use it, otherwise default to 1 | |
| MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) | |
| # Implement the BackendServicer class with the service methods | |
| class BackendServicer(backend_pb2_grpc.BackendServicer): | |
| """ | |
| BackendServicer is the class that implements the gRPC service | |
| """ | |
| def Health(self, request, context): | |
| return backend_pb2.Reply(message=bytes("OK", 'utf-8')) | |
| def LoadModel(self, request, context): | |
| import whisperx | |
| import torch | |
| device = "cpu" | |
| if request.CUDA: | |
| device = "cuda" | |
| mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
| if mps_available: | |
| device = "mps" | |
| try: | |
| print("Preparing WhisperX model, please wait", file=sys.stderr) | |
| compute_type = "float16" if device != "cpu" else "int8" | |
| self.model = whisperx.load_model( | |
| request.Model, | |
| device, | |
| compute_type=compute_type, | |
| ) | |
| self.device = device | |
| self.model_name = request.Model | |
| # Store HF token for diarization if available | |
| self.hf_token = os.environ.get("HF_TOKEN", None) | |
| self.diarize_pipeline = None | |
| # Cache for alignment models keyed by language code | |
| self.align_cache = {} | |
| print(f"WhisperX model loaded: {request.Model} on {device}", file=sys.stderr) | |
| except Exception as err: | |
| return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") | |
| return backend_pb2.Result(message="Model loaded successfully", success=True) | |
| def _get_align_model(self, language_code): | |
| """Load or return cached alignment model for a given language.""" | |
| import whisperx | |
| if language_code not in self.align_cache: | |
| model_a, metadata = whisperx.load_align_model( | |
| language_code=language_code, | |
| device=self.device, | |
| ) | |
| self.align_cache[language_code] = (model_a, metadata) | |
| return self.align_cache[language_code] | |
| def AudioTranscription(self, request, context): | |
| import whisperx | |
| resultSegments = [] | |
| text = "" | |
| try: | |
| audio = whisperx.load_audio(request.dst) | |
| # Transcribe | |
| transcript = self.model.transcribe( | |
| audio, | |
| batch_size=16, | |
| language=request.language if request.language else None, | |
| ) | |
| # Align for word-level timestamps | |
| model_a, metadata = self._get_align_model(transcript["language"]) | |
| transcript = whisperx.align( | |
| transcript["segments"], | |
| model_a, | |
| metadata, | |
| audio, | |
| self.device, | |
| return_char_alignments=False, | |
| ) | |
| # Diarize if requested and HF token is available | |
| if request.diarize and self.hf_token: | |
| if self.diarize_pipeline is None: | |
| self.diarize_pipeline = whisperx.DiarizationPipeline( | |
| use_auth_token=self.hf_token, | |
| device=self.device, | |
| ) | |
| diarize_segments = self.diarize_pipeline(audio) | |
| transcript = whisperx.assign_word_speakers(diarize_segments, transcript) | |
| # Build result segments | |
| for idx, seg in enumerate(transcript["segments"]): | |
| seg_text = seg.get("text", "") | |
| start = int(seg.get("start", 0)) | |
| end = int(seg.get("end", 0)) | |
| speaker = seg.get("speaker", "") | |
| resultSegments.append(backend_pb2.TranscriptSegment( | |
| id=idx, | |
| start=start, | |
| end=end, | |
| text=seg_text, | |
| speaker=speaker, | |
| )) | |
| text += seg_text | |
| except Exception as err: | |
| print(f"Unexpected {err=}, {type(err)=}", file=sys.stderr) | |
| return backend_pb2.TranscriptResult(segments=[], text="") | |
| return backend_pb2.TranscriptResult(segments=resultSegments, text=text) | |
| def serve(address): | |
| server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS), | |
| options=[ | |
| ('grpc.max_message_length', 50 * 1024 * 1024), # 50MB | |
| ('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB | |
| ('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB | |
| ]) | |
| backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) | |
| server.add_insecure_port(address) | |
| server.start() | |
| print("Server started. Listening on: " + address, file=sys.stderr) | |
| # Define the signal handler function | |
| def signal_handler(sig, frame): | |
| print("Received termination signal. Shutting down...") | |
| server.stop(0) | |
| sys.exit(0) | |
| # Set the signal handlers for SIGINT and SIGTERM | |
| signal.signal(signal.SIGINT, signal_handler) | |
| signal.signal(signal.SIGTERM, signal_handler) | |
| try: | |
| while True: | |
| time.sleep(_ONE_DAY_IN_SECONDS) | |
| except KeyboardInterrupt: | |
| server.stop(0) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="Run the gRPC server.") | |
| parser.add_argument( | |
| "--addr", default="localhost:50051", help="The address to bind the server to." | |
| ) | |
| args = parser.parse_args() | |
| serve(args.addr) | |