Zw07 commited on
Commit
711ccaa
·
verified ·
1 Parent(s): 3510e51

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -96
app.py DELETED
@@ -1,96 +0,0 @@
1
- import time
2
- import streamlit as st
3
- from transformers import pipeline
4
- import os
5
- import torch
6
- import datetime
7
- import numpy as np
8
- import soundfile
9
- from wavmark.utils import file_reader
10
-
11
- # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
12
-
13
- # st.title("Hot Dog? Or Not?")
14
-
15
- # file_name = st.file_uploader("Upload a hot dog candidate image")
16
-
17
- # if file_name is not None:
18
- # col1, col2 = st.columns(2)
19
-
20
- # image = Image.open(file_name)
21
- # col1.image(image, use_column_width=True)
22
- # predictions = pipeline(image)
23
-
24
- # col2.header("Probabilities")
25
- # for p in predictions:
26
- # col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
27
-
28
- def create_default_value():
29
- if "def_value" not in st.session_state:
30
- def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
31
- def_val_str = "".join([str(i) for i in def_val_npy])
32
- st.session_state.def_value = def_val_str
33
-
34
- # Main web app
35
- def main():
36
- create_default_value()
37
-
38
- # st.title("MDS07")
39
- # st.write("https://github.com/wavmark/wavmark")
40
- markdown_text = """
41
- # MDS07
42
- [AudioSeal](https://github.com/jcha0155/AudioSealEnhanced) is the next-generation watermarking tool driven by AI.
43
- You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
44
-
45
- This page is for demonstration usage and only process **the first minute** of the audio.
46
- If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/AudioSealEnhanced).
47
- """
48
-
49
- # 使用st.markdown渲染Markdown文本
50
- st.markdown(markdown_text)
51
-
52
- audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
53
-
54
- if audio_file:
55
- # 保存文件到本地:
56
- tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
57
- with open(tmp_input_audio_file, "wb") as f:
58
- f.write(audio_file.getbuffer())
59
-
60
- # 展示文件到页面上
61
- # st.audio(tmp_input_audio_file, format="audio/wav")
62
-
63
- action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])
64
-
65
- # if action == "Add Watermark":
66
- # watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
67
- # add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
68
- # if add_watermark_button: # 点击按钮后执行的
69
- # if audio_file and watermark_text:
70
- # with st.spinner("Adding Watermark..."):
71
- # watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
72
- # st.write("Watermarked Audio:")
73
- # print("watermarked_audio:", watermarked_audio)
74
- # st.audio(watermarked_audio, format="audio/wav")
75
- # st.write("Time Cost: %d seconds" % encode_time_cost)
76
-
77
- # # st.button("Add Watermark", disabled=False)
78
- # elif action == "Decode Watermark":
79
- # if st.button("Decode"):
80
- # with st.spinner("Decoding..."):
81
- # decode_watermark(tmp_input_audio_file)
82
-
83
-
84
- if __name__ == "__main__":
85
- # default_sr = 16000
86
- # max_second_encode = 60
87
- # max_second_decode = 30
88
- # len_start_bit = 16
89
- # device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
90
- # model = wavmark.load_model().to(device)
91
- main()
92
-
93
- # audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"
94
-
95
- # decoded_watermark, decode_cost = decode_watermark(audio_path)
96
- # print(decoded_watermark)