Clean up
Browse files
translation_direction_detection.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from nmtscore import NMTScorer
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import List, Union, Optional
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from scipy.special import softmax
|
8 |
+
from scipy.stats import permutation_test
|
9 |
+
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class TranslationDirectionResult:
|
13 |
+
sentence1: Union[str, List[str]]
|
14 |
+
sentence2: Union[str, List[str]]
|
15 |
+
lang1: str
|
16 |
+
lang2: str
|
17 |
+
raw_prob_1_to_2: float
|
18 |
+
raw_prob_2_to_1: float
|
19 |
+
pvalue: Optional[float] = None
|
20 |
+
|
21 |
+
@property
|
22 |
+
def num_sentences(self):
|
23 |
+
return len(self.sentence1) if isinstance(self.sentence1, list) else 1
|
24 |
+
|
25 |
+
@property
|
26 |
+
def prob_1_to_2(self):
|
27 |
+
return softmax([self.raw_prob_1_to_2, self.raw_prob_2_to_1])[0]
|
28 |
+
|
29 |
+
@property
|
30 |
+
def prob_2_to_1(self):
|
31 |
+
return softmax([self.raw_prob_1_to_2, self.raw_prob_2_to_1])[1]
|
32 |
+
|
33 |
+
@property
|
34 |
+
def predicted_direction(self) -> str:
|
35 |
+
if self.raw_prob_1_to_2 >= self.raw_prob_2_to_1:
|
36 |
+
return self.lang1 + '→' + self.lang2
|
37 |
+
else:
|
38 |
+
return self.lang2 + '→' + self.lang1
|
39 |
+
|
40 |
+
def __str__(self):
|
41 |
+
s = f"""\
|
42 |
+
Predicted direction: {self.predicted_direction}
|
43 |
+
{self.num_sentences} sentence pair{"s" if self.num_sentences > 1 else ""}
|
44 |
+
{self.lang1}→{self.lang2}: {self.prob_1_to_2:.3f}
|
45 |
+
{self.lang2}→{self.lang1}: {self.prob_2_to_1:.3f}"""
|
46 |
+
if self.pvalue is not None:
|
47 |
+
s += f"\np-value: {self.pvalue}\n"
|
48 |
+
return s
|
49 |
+
|
50 |
+
|
51 |
+
class TranslationDirectionDetector:
|
52 |
+
|
53 |
+
def __init__(self, scorer: NMTScorer = None, use_normalization: bool = False):
|
54 |
+
self.scorer = scorer or NMTScorer()
|
55 |
+
self.use_normalization = use_normalization
|
56 |
+
|
57 |
+
def detect(self,
|
58 |
+
sentence1: Union[str, List[str]],
|
59 |
+
sentence2: Union[str, List[str]],
|
60 |
+
lang1: str,
|
61 |
+
lang2: str,
|
62 |
+
return_pvalue: bool = False,
|
63 |
+
pvalue_n_resamples: int = 9999,
|
64 |
+
score_kwargs: dict = None
|
65 |
+
) -> TranslationDirectionResult:
|
66 |
+
if isinstance(sentence1, list) and isinstance(sentence2, list):
|
67 |
+
if len(sentence1) != len(sentence2):
|
68 |
+
raise ValueError("Lists sentence1 and sentence2 must have same length")
|
69 |
+
if len(sentence1) == 0:
|
70 |
+
raise ValueError("Lists sentence1 and sentence2 must not be empty")
|
71 |
+
if len(sentence1) == 1 and return_pvalue:
|
72 |
+
raise ValueError("return_pvalue=True requires the documents to have multiple sentences")
|
73 |
+
if lang1 == lang2:
|
74 |
+
raise ValueError("lang1 and lang2 must be different")
|
75 |
+
|
76 |
+
prob_1_to_2 = self.scorer.score_direct(
|
77 |
+
sentence2, sentence1,
|
78 |
+
lang2, lang1,
|
79 |
+
normalize=self.use_normalization,
|
80 |
+
both_directions=False,
|
81 |
+
score_kwargs=score_kwargs
|
82 |
+
)
|
83 |
+
prob_2_to_1 = self.scorer.score_direct(
|
84 |
+
sentence1, sentence2,
|
85 |
+
lang1, lang2,
|
86 |
+
normalize=self.use_normalization,
|
87 |
+
both_directions=False,
|
88 |
+
score_kwargs=score_kwargs
|
89 |
+
)
|
90 |
+
pvalue = None
|
91 |
+
|
92 |
+
if isinstance(sentence1, list): # document-level
|
93 |
+
# Compute the average probability per target token, across the complete document
|
94 |
+
# 1. Convert probabilities back to log probabilities
|
95 |
+
log_prob_1_to_2 = np.log2(np.array(prob_1_to_2))
|
96 |
+
log_prob_2_to_1 = np.log2(np.array(prob_2_to_1))
|
97 |
+
# 2. Reverse the sentence-level length normalization
|
98 |
+
sentence1_lengths = np.array([self._get_sentence_length(s) for s in sentence1])
|
99 |
+
sentence2_lengths = np.array([self._get_sentence_length(s) for s in sentence2])
|
100 |
+
log_prob_1_to_2 = sentence2_lengths * log_prob_1_to_2
|
101 |
+
log_prob_2_to_1 = sentence1_lengths * log_prob_2_to_1
|
102 |
+
# 4. Sum up the log probabilities across the document
|
103 |
+
total_log_prob_1_to_2 = log_prob_1_to_2.sum()
|
104 |
+
total_log_prob_2_to_1 = log_prob_2_to_1.sum()
|
105 |
+
# 3. Document-level length normalization
|
106 |
+
avg_log_prob_1_to_2 = total_log_prob_1_to_2 / sum(sentence2_lengths)
|
107 |
+
avg_log_prob_2_to_1 = total_log_prob_2_to_1 / sum(sentence1_lengths)
|
108 |
+
# 4. Convert back to probabilities
|
109 |
+
prob_1_to_2 = 2 ** avg_log_prob_1_to_2
|
110 |
+
prob_2_to_1 = 2 ** avg_log_prob_2_to_1
|
111 |
+
|
112 |
+
if return_pvalue:
|
113 |
+
x = np.vstack([log_prob_1_to_2, sentence2_lengths]).T
|
114 |
+
y = np.vstack([log_prob_2_to_1, sentence1_lengths]).T
|
115 |
+
result = permutation_test(
|
116 |
+
data=(x, y),
|
117 |
+
statistic=self._statistic_token_mean,
|
118 |
+
permutation_type="samples",
|
119 |
+
n_resamples=pvalue_n_resamples,
|
120 |
+
)
|
121 |
+
pvalue = result.pvalue
|
122 |
+
else:
|
123 |
+
if return_pvalue:
|
124 |
+
raise ValueError("return_pvalue=True requires sentence1 and sentence2 to be lists of sentences")
|
125 |
+
|
126 |
+
return TranslationDirectionResult(
|
127 |
+
sentence1=sentence1,
|
128 |
+
sentence2=sentence2,
|
129 |
+
lang1=lang1,
|
130 |
+
lang2=lang2,
|
131 |
+
raw_prob_1_to_2=prob_1_to_2,
|
132 |
+
raw_prob_2_to_1=prob_2_to_1,
|
133 |
+
pvalue=pvalue,
|
134 |
+
)
|
135 |
+
|
136 |
+
def _get_sentence_length(self, sentence: str) -> int:
|
137 |
+
tokens = self.scorer.model.tokenizer.tokenize(sentence)
|
138 |
+
return len(tokens)
|
139 |
+
|
140 |
+
@staticmethod
|
141 |
+
def _statistic_token_mean(x: np.ndarray, y: np.ndarray, axis: int = -1) -> float:
|
142 |
+
"""
|
143 |
+
Statistic for scipy.stats.permutation_test
|
144 |
+
|
145 |
+
:param x: Matrix of shape (2 x num_sentences). The first row contains the unnormalized log probability
|
146 |
+
for lang1→lang2, the second row contains the sentence lengths in lang2.
|
147 |
+
:param y: Same as x, but for lang2→lang1
|
148 |
+
:return: Difference between lang1→lang2 and lang2→lang1
|
149 |
+
"""
|
150 |
+
if axis != -1:
|
151 |
+
raise NotImplementedError("Only axis=-1 is supported")
|
152 |
+
# Add batch dim
|
153 |
+
if x.ndim == 2:
|
154 |
+
x = x[np.newaxis, ...]
|
155 |
+
y = y[np.newaxis, ...]
|
156 |
+
# Sum up the log probabilities across the document
|
157 |
+
total_log_prob_1_to_2 = x[:, 0].sum(axis=axis)
|
158 |
+
total_log_prob_2_to_1 = y[:, 0].sum(axis=axis)
|
159 |
+
# Document-level length normalization
|
160 |
+
avg_log_prob_1_to_2 = total_log_prob_1_to_2 / x[:, 1].sum(axis=axis)
|
161 |
+
avg_log_prob_2_to_1 = total_log_prob_2_to_1 / y[:, 1].sum(axis=axis)
|
162 |
+
# Convert to probabilities
|
163 |
+
prob_1_to_2 = 2 ** avg_log_prob_1_to_2
|
164 |
+
prob_2_to_1 = 2 ** avg_log_prob_2_to_1
|
165 |
+
# Compute difference
|
166 |
+
return prob_1_to_2 - prob_2_to_1
|
167 |
+
|