|
import os |
|
import shutil |
|
import numpy as np |
|
import scipy.io as sio |
|
import torch |
|
|
|
|
|
def load_S3DIS_sample(text_path, sample=False): |
|
data = np.loadtxt(text_path) |
|
point, color = data[:, :3], data[:, 3:] |
|
|
|
point = point - point.min(axis=0) |
|
point = point / point.max(axis=0) |
|
color = color / 255. |
|
|
|
return point, color |
|
|
|
def load_ScanNet_sample(data_path): |
|
|
|
all_data = torch.load(data_path) |
|
|
|
point = np.array(all_data['coord']) |
|
color = np.array(all_data['color']) |
|
|
|
point = point - point.min(axis=0) |
|
point = point / point.max(axis=0) |
|
color = color / 255. |
|
return point, color |
|
|
|
def load_KITTI_sample(data_path, close=False): |
|
all_data = np.load(data_path) |
|
|
|
point = all_data[:, :3] |
|
color = all_data[:, 3:6] |
|
|
|
pmin = point.min(axis=0) |
|
point = point - pmin |
|
pmax = point.max(axis=0) |
|
point = point / pmax |
|
|
|
return point, color |
|
|
|
def load_Objaverse_sample(data_path): |
|
all_data = np.load(data_path) |
|
|
|
point = all_data[:, :3] |
|
color = all_data[:, 3:6] |
|
|
|
pmin = point.min(axis=0) |
|
point = point - pmin |
|
pmax = point.max(axis=0) |
|
point = point / pmax |
|
|
|
return point, color |
|
|
|
def load_Semantic3D_sample(data_path, id, sample=False): |
|
all_data = np.load(data_path) |
|
|
|
point = all_data[:, :3] |
|
color = all_data[:, 3:6] |
|
|
|
pmin = point.min(axis=0) |
|
point = point - pmin |
|
pmax = point.max(axis=0) |
|
point = point / pmax |
|
|
|
if id > 1: return point, color |
|
if id == 0: |
|
filter_mask = (point[:, 0] > 0.4) & (point[:, 1] > 0.4) & (point[:, 2] < 0.4) |
|
else: |
|
filter_mask = (point[:, 0] > 0.4) & (point[:, 1] < 0.5) |
|
point = point[filter_mask] |
|
color = color[filter_mask] |
|
|
|
pmin = point.min(axis=0) |
|
point = point - pmin |
|
pmax = point.max(axis=0) |
|
point = point / pmax |
|
|
|
return point, color |