|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import warnings |
|
from threading import Thread |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
|
|
def get_sdpa_settings(): |
|
if torch.cuda.is_available(): |
|
old_gpu = torch.cuda.get_device_properties(0).major < 7 |
|
|
|
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8 |
|
if not use_flash_attn: |
|
warnings.warn( |
|
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.", |
|
category=UserWarning, |
|
stacklevel=2, |
|
) |
|
|
|
|
|
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2]) |
|
if pytorch_version < (2, 2): |
|
warnings.warn( |
|
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. " |
|
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).", |
|
category=UserWarning, |
|
stacklevel=2, |
|
) |
|
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn |
|
else: |
|
old_gpu = True |
|
use_flash_attn = False |
|
math_kernel_on = True |
|
|
|
return old_gpu, use_flash_attn, math_kernel_on |
|
|
|
|
|
def get_connected_components(mask): |
|
""" |
|
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W). |
|
|
|
Inputs: |
|
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is |
|
background. |
|
|
|
Outputs: |
|
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels |
|
for foreground pixels and 0 for background pixels. |
|
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected |
|
components for foreground pixels and 0 for background pixels. |
|
""" |
|
from sam2 import csrc |
|
|
|
return csrc.connect(mask.to(torch.uint8).contiguous()) |
|
|
|
|
|
def mask_to_box(masks: torch.Tensor): |
|
""" |
|
compute bounding box given an input mask |
|
|
|
Inputs: |
|
- masks: [B, 1, H, W] boxes, dtype=torch.Tensor |
|
|
|
Returns: |
|
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor |
|
""" |
|
B, _, h, w = masks.shape |
|
device = masks.device |
|
xs = torch.arange(w, device=device, dtype=torch.int32) |
|
ys = torch.arange(h, device=device, dtype=torch.int32) |
|
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy") |
|
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w) |
|
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w) |
|
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1) |
|
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1) |
|
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1) |
|
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1) |
|
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1) |
|
|
|
return bbox_coords |
|
|
|
|
|
def _load_img_as_tensor(img_path, image_size): |
|
img_pil = Image.open(img_path) |
|
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size))) |
|
if img_np.dtype == np.uint8: |
|
img_np = img_np / 255.0 |
|
else: |
|
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}") |
|
img = torch.from_numpy(img_np).permute(2, 0, 1) |
|
video_width, video_height = img_pil.size |
|
return img, video_height, video_width |
|
|
|
|
|
class AsyncVideoFrameLoader: |
|
""" |
|
A list of video frames to be load asynchronously without blocking session start. |
|
""" |
|
|
|
def __init__(self, img_paths, image_size, offload_video_to_cpu, img_mean, img_std): |
|
self.img_paths = img_paths |
|
self.image_size = image_size |
|
self.offload_video_to_cpu = offload_video_to_cpu |
|
self.img_mean = img_mean |
|
self.img_std = img_std |
|
|
|
self.images = [None] * len(img_paths) |
|
|
|
self.exception = None |
|
|
|
self.video_height = None |
|
self.video_width = None |
|
|
|
|
|
|
|
self.__getitem__(0) |
|
|
|
|
|
def _load_frames(): |
|
try: |
|
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"): |
|
self.__getitem__(n) |
|
except Exception as e: |
|
self.exception = e |
|
|
|
self.thread = Thread(target=_load_frames, daemon=True) |
|
self.thread.start() |
|
|
|
def __getitem__(self, index): |
|
if self.exception is not None: |
|
raise RuntimeError("Failure in frame loading thread") from self.exception |
|
|
|
img = self.images[index] |
|
if img is not None: |
|
return img |
|
|
|
img, video_height, video_width = _load_img_as_tensor( |
|
self.img_paths[index], self.image_size |
|
) |
|
self.video_height = video_height |
|
self.video_width = video_width |
|
|
|
img -= self.img_mean |
|
img /= self.img_std |
|
if not self.offload_video_to_cpu: |
|
img = img.cuda(non_blocking=True) |
|
self.images[index] = img |
|
return img |
|
|
|
def __len__(self): |
|
return len(self.images) |
|
|
|
|
|
def load_video_frames( |
|
img_paths, |
|
image_size, |
|
offload_video_to_cpu, |
|
img_mean=(0.485, 0.456, 0.406), |
|
img_std=(0.229, 0.224, 0.225), |
|
async_loading_frames=False, |
|
): |
|
""" |
|
Load the video frames from a directory of JPEG/PNG files ("<frame_index>.jpg" or "<frame_index>.png" format). |
|
|
|
The frames are resized to image_size x image_size and are loaded to GPU if |
|
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`. |
|
|
|
You can load a frame asynchronously by setting `async_loading_frames` to `True`. |
|
""" |
|
num_frames = len(img_paths) |
|
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] |
|
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] |
|
|
|
if async_loading_frames: |
|
lazy_images = AsyncVideoFrameLoader( |
|
img_paths, image_size, offload_video_to_cpu, img_mean, img_std |
|
) |
|
return lazy_images, lazy_images.video_height, lazy_images.video_width |
|
|
|
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32) |
|
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")): |
|
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size) |
|
if not offload_video_to_cpu: |
|
images = images.cuda() |
|
img_mean = img_mean.cuda() |
|
img_std = img_std.cuda() |
|
|
|
images -= img_mean |
|
images /= img_std |
|
return images, video_height, video_width |
|
|
|
|
|
def fill_holes_in_mask_scores(mask, max_area): |
|
""" |
|
A post processor to fill small holes in mask scores with area under `max_area`. |
|
""" |
|
|
|
|
|
assert max_area > 0, "max_area must be positive" |
|
|
|
input_mask = mask |
|
try: |
|
labels, areas = get_connected_components(mask <= 0) |
|
is_hole = (labels > 0) & (areas <= max_area) |
|
|
|
mask = torch.where(is_hole, 0.1, mask) |
|
except Exception as e: |
|
|
|
warnings.warn( |
|
f"{e}\n\nSkipping the post-processing step due to the error above. " |
|
"Consider building SAM 2 with CUDA extension to enable post-processing (see " |
|
"https://github.com/facebookresearch/segment-anything-2/blob/main/INSTALL.md).", |
|
category=UserWarning, |
|
stacklevel=2, |
|
) |
|
mask = input_mask |
|
|
|
return mask |
|
|
|
|
|
def concat_points(old_point_inputs, new_points, new_labels): |
|
"""Add new points and labels to previous point inputs (add at the end).""" |
|
if old_point_inputs is None: |
|
points, labels = new_points, new_labels |
|
else: |
|
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1) |
|
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1) |
|
|
|
return {"point_coords": points, "point_labels": labels} |
|
|