|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from copy import deepcopy |
|
from itertools import product |
|
from typing import Any, Dict, Generator, ItemsView, List, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
|
|
|
|
class MaskData: |
|
""" |
|
A structure for storing masks and their related data in batched format. |
|
Implements basic filtering and concatenation. |
|
""" |
|
|
|
def __init__(self, **kwargs) -> None: |
|
for v in kwargs.values(): |
|
assert isinstance( |
|
v, (list, np.ndarray, torch.Tensor) |
|
), "MaskData only supports list, numpy arrays, and torch tensors." |
|
self._stats = dict(**kwargs) |
|
|
|
def __setitem__(self, key: str, item: Any) -> None: |
|
assert isinstance( |
|
item, (list, np.ndarray, torch.Tensor) |
|
), "MaskData only supports list, numpy arrays, and torch tensors." |
|
self._stats[key] = item |
|
|
|
def __delitem__(self, key: str) -> None: |
|
del self._stats[key] |
|
|
|
def __getitem__(self, key: str) -> Any: |
|
return self._stats[key] |
|
|
|
def items(self) -> ItemsView[str, Any]: |
|
return self._stats.items() |
|
|
|
def filter(self, keep: torch.Tensor) -> None: |
|
for k, v in self._stats.items(): |
|
if v is None: |
|
self._stats[k] = None |
|
elif isinstance(v, torch.Tensor): |
|
self._stats[k] = v[torch.as_tensor(keep, device=v.device)] |
|
elif isinstance(v, np.ndarray): |
|
self._stats[k] = v[keep.detach().cpu().numpy()] |
|
elif isinstance(v, list) and keep.dtype == torch.bool: |
|
self._stats[k] = [a for i, a in enumerate(v) if keep[i]] |
|
elif isinstance(v, list): |
|
self._stats[k] = [v[i] for i in keep] |
|
else: |
|
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") |
|
|
|
def cat(self, new_stats: "MaskData") -> None: |
|
for k, v in new_stats.items(): |
|
if k not in self._stats or self._stats[k] is None: |
|
self._stats[k] = deepcopy(v) |
|
elif isinstance(v, torch.Tensor): |
|
self._stats[k] = torch.cat([self._stats[k], v], dim=0) |
|
elif isinstance(v, np.ndarray): |
|
self._stats[k] = np.concatenate([self._stats[k], v], axis=0) |
|
elif isinstance(v, list): |
|
self._stats[k] = self._stats[k] + deepcopy(v) |
|
else: |
|
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") |
|
|
|
def to_numpy(self) -> None: |
|
for k, v in self._stats.items(): |
|
if isinstance(v, torch.Tensor): |
|
self._stats[k] = v.float().detach().cpu().numpy() |
|
|
|
|
|
def is_box_near_crop_edge( |
|
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 |
|
) -> torch.Tensor: |
|
"""Filter masks at the edge of a crop, but not at the edge of the original image.""" |
|
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) |
|
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) |
|
boxes = uncrop_boxes_xyxy(boxes, crop_box).float() |
|
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) |
|
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) |
|
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) |
|
return torch.any(near_crop_edge, dim=1) |
|
|
|
|
|
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: |
|
box_xywh = deepcopy(box_xyxy) |
|
box_xywh[2] = box_xywh[2] - box_xywh[0] |
|
box_xywh[3] = box_xywh[3] - box_xywh[1] |
|
return box_xywh |
|
|
|
|
|
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: |
|
assert len(args) > 0 and all( |
|
len(a) == len(args[0]) for a in args |
|
), "Batched iteration must have inputs of all the same size." |
|
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) |
|
for b in range(n_batches): |
|
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] |
|
|
|
|
|
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: |
|
""" |
|
Encodes masks to an uncompressed RLE, in the format expected by |
|
pycoco tools. |
|
""" |
|
|
|
b, h, w = tensor.shape |
|
tensor = tensor.permute(0, 2, 1).flatten(1) |
|
|
|
|
|
diff = tensor[:, 1:] ^ tensor[:, :-1] |
|
change_indices = diff.nonzero() |
|
|
|
|
|
out = [] |
|
for i in range(b): |
|
cur_idxs = change_indices[change_indices[:, 0] == i, 1] |
|
cur_idxs = torch.cat( |
|
[ |
|
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), |
|
cur_idxs + 1, |
|
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), |
|
] |
|
) |
|
btw_idxs = cur_idxs[1:] - cur_idxs[:-1] |
|
counts = [] if tensor[i, 0] == 0 else [0] |
|
counts.extend(btw_idxs.detach().cpu().tolist()) |
|
out.append({"size": [h, w], "counts": counts}) |
|
return out |
|
|
|
|
|
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: |
|
"""Compute a binary mask from an uncompressed RLE.""" |
|
h, w = rle["size"] |
|
mask = np.empty(h * w, dtype=bool) |
|
idx = 0 |
|
parity = False |
|
for count in rle["counts"]: |
|
mask[idx : idx + count] = parity |
|
idx += count |
|
parity ^= True |
|
mask = mask.reshape(w, h) |
|
return mask.transpose() |
|
|
|
|
|
def area_from_rle(rle: Dict[str, Any]) -> int: |
|
return sum(rle["counts"][1::2]) |
|
|
|
|
|
def calculate_stability_score( |
|
masks: torch.Tensor, mask_threshold: float, threshold_offset: float |
|
) -> torch.Tensor: |
|
""" |
|
Computes the stability score for a batch of masks. The stability |
|
score is the IoU between the binary masks obtained by thresholding |
|
the predicted mask logits at high and low values. |
|
""" |
|
|
|
|
|
intersections = ( |
|
(masks > (mask_threshold + threshold_offset)) |
|
.sum(-1, dtype=torch.int16) |
|
.sum(-1, dtype=torch.int32) |
|
) |
|
unions = ( |
|
(masks > (mask_threshold - threshold_offset)) |
|
.sum(-1, dtype=torch.int16) |
|
.sum(-1, dtype=torch.int32) |
|
) |
|
return intersections / unions |
|
|
|
|
|
def build_point_grid(n_per_side: int) -> np.ndarray: |
|
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" |
|
offset = 1 / (2 * n_per_side) |
|
points_one_side = np.linspace(offset, 1 - offset, n_per_side) |
|
points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) |
|
points_y = np.tile(points_one_side[:, None], (1, n_per_side)) |
|
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) |
|
return points |
|
|
|
|
|
def build_all_layer_point_grids( |
|
n_per_side: int, n_layers: int, scale_per_layer: int |
|
) -> List[np.ndarray]: |
|
"""Generates point grids for all crop layers.""" |
|
points_by_layer = [] |
|
for i in range(n_layers + 1): |
|
n_points = int(n_per_side / (scale_per_layer**i)) |
|
points_by_layer.append(build_point_grid(n_points)) |
|
return points_by_layer |
|
|
|
|
|
def generate_crop_boxes( |
|
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float |
|
) -> Tuple[List[List[int]], List[int]]: |
|
""" |
|
Generates a list of crop boxes of different sizes. Each layer |
|
has (2**i)**2 boxes for the ith layer. |
|
""" |
|
crop_boxes, layer_idxs = [], [] |
|
im_h, im_w = im_size |
|
short_side = min(im_h, im_w) |
|
|
|
|
|
crop_boxes.append([0, 0, im_w, im_h]) |
|
layer_idxs.append(0) |
|
|
|
def crop_len(orig_len, n_crops, overlap): |
|
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) |
|
|
|
for i_layer in range(n_layers): |
|
n_crops_per_side = 2 ** (i_layer + 1) |
|
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) |
|
|
|
crop_w = crop_len(im_w, n_crops_per_side, overlap) |
|
crop_h = crop_len(im_h, n_crops_per_side, overlap) |
|
|
|
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] |
|
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] |
|
|
|
|
|
for x0, y0 in product(crop_box_x0, crop_box_y0): |
|
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] |
|
crop_boxes.append(box) |
|
layer_idxs.append(i_layer + 1) |
|
|
|
return crop_boxes, layer_idxs |
|
|
|
|
|
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: |
|
x0, y0, _, _ = crop_box |
|
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) |
|
|
|
if len(boxes.shape) == 3: |
|
offset = offset.unsqueeze(1) |
|
return boxes + offset |
|
|
|
|
|
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: |
|
x0, y0, _, _ = crop_box |
|
offset = torch.tensor([[x0, y0]], device=points.device) |
|
|
|
if len(points.shape) == 3: |
|
offset = offset.unsqueeze(1) |
|
return points + offset |
|
|
|
|
|
def uncrop_masks( |
|
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int |
|
) -> torch.Tensor: |
|
x0, y0, x1, y1 = crop_box |
|
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: |
|
return masks |
|
|
|
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) |
|
pad = (x0, pad_x - x0, y0, pad_y - y0) |
|
return torch.nn.functional.pad(masks, pad, value=0) |
|
|
|
|
|
def remove_small_regions( |
|
mask: np.ndarray, area_thresh: float, mode: str |
|
) -> Tuple[np.ndarray, bool]: |
|
""" |
|
Removes small disconnected regions and holes in a mask. Returns the |
|
mask and an indicator of if the mask has been modified. |
|
""" |
|
import cv2 |
|
|
|
assert mode in ["holes", "islands"] |
|
correct_holes = mode == "holes" |
|
working_mask = (correct_holes ^ mask).astype(np.uint8) |
|
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) |
|
sizes = stats[:, -1][1:] |
|
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] |
|
if len(small_regions) == 0: |
|
return mask, False |
|
fill_labels = [0] + small_regions |
|
if not correct_holes: |
|
fill_labels = [i for i in range(n_labels) if i not in fill_labels] |
|
|
|
if len(fill_labels) == 0: |
|
fill_labels = [int(np.argmax(sizes)) + 1] |
|
mask = np.isin(regions, fill_labels) |
|
return mask, True |
|
|
|
|
|
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: |
|
from pycocotools import mask as mask_utils |
|
|
|
h, w = uncompressed_rle["size"] |
|
rle = mask_utils.frPyObjects(uncompressed_rle, h, w) |
|
rle["counts"] = rle["counts"].decode("utf-8") |
|
return rle |
|
|
|
|
|
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for |
|
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. |
|
""" |
|
|
|
if torch.numel(masks) == 0: |
|
return torch.zeros(*masks.shape[:-2], 4, device=masks.device) |
|
|
|
|
|
shape = masks.shape |
|
h, w = shape[-2:] |
|
if len(shape) > 2: |
|
masks = masks.flatten(0, -3) |
|
else: |
|
masks = masks.unsqueeze(0) |
|
|
|
|
|
in_height, _ = torch.max(masks, dim=-1) |
|
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] |
|
bottom_edges, _ = torch.max(in_height_coords, dim=-1) |
|
in_height_coords = in_height_coords + h * (~in_height) |
|
top_edges, _ = torch.min(in_height_coords, dim=-1) |
|
|
|
|
|
in_width, _ = torch.max(masks, dim=-2) |
|
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] |
|
right_edges, _ = torch.max(in_width_coords, dim=-1) |
|
in_width_coords = in_width_coords + w * (~in_width) |
|
left_edges, _ = torch.min(in_width_coords, dim=-1) |
|
|
|
|
|
|
|
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) |
|
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) |
|
out = out * (~empty_filter).unsqueeze(-1) |
|
|
|
|
|
if len(shape) > 2: |
|
out = out.reshape(*shape[:-2], 4) |
|
else: |
|
out = out[0] |
|
|
|
return out |
|
|