Spaces:
Running
on
Zero
Running
on
Zero
main model
Browse files- FFV1MT_MS.py +311 -0
FFV1MT_MS.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from MT import FeatureTransformer
|
6 |
+
from torch.cuda.amp import autocast as autocast
|
7 |
+
from flow_tools import viz_img_seq, save_img_seq, plt_show_img_flow
|
8 |
+
from copy import deepcopy
|
9 |
+
from V1 import V1
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from io import BytesIO
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, dilation=1, isReLU=True):
|
15 |
+
if isReLU:
|
16 |
+
return nn.Sequential(
|
17 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
18 |
+
dilation=dilation,
|
19 |
+
padding=((kernel_size - 1) * dilation) // 2, bias=True),
|
20 |
+
nn.GELU()
|
21 |
+
)
|
22 |
+
else:
|
23 |
+
return nn.Sequential(
|
24 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
25 |
+
dilation=dilation,
|
26 |
+
padding=((kernel_size - 1) * dilation) // 2, bias=True)
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
def plt_attention(attention, h, w):
|
32 |
+
col = len(attention) // 2
|
33 |
+
fig = plt.figure(figsize=(10, 8))
|
34 |
+
|
35 |
+
for i in range(len(attention)):
|
36 |
+
viz = attention[i][0, :, :, h, w].detach().cpu().numpy()
|
37 |
+
# viz = viz[7:-7, 7:-7]
|
38 |
+
if i == 0:
|
39 |
+
viz_all = viz
|
40 |
+
else:
|
41 |
+
viz_all = viz_all + viz
|
42 |
+
|
43 |
+
ax1 = fig.add_subplot(2, col, i + 1)
|
44 |
+
img = ax1.imshow(viz, cmap="rainbow", interpolation="bilinear")
|
45 |
+
ax1.scatter(w, h, color='grey', s=300, alpha=0.5)
|
46 |
+
ax1.scatter(w, h, color='red', s=150, alpha=0.5)
|
47 |
+
plt.title(" Iteration %d" % (i + 1))
|
48 |
+
if i == len(attention) - 1:
|
49 |
+
plt.title(" Final Iteration")
|
50 |
+
plt.xticks([])
|
51 |
+
plt.yticks([])
|
52 |
+
|
53 |
+
|
54 |
+
# tight layout
|
55 |
+
plt.tight_layout()
|
56 |
+
# save the figure
|
57 |
+
buf = BytesIO()
|
58 |
+
plt.savefig(buf, format='png')
|
59 |
+
buf.seek(0)
|
60 |
+
plt.close()
|
61 |
+
# convert the figure to an array
|
62 |
+
img = Image.open(buf)
|
63 |
+
img = np.array(img)
|
64 |
+
return img
|
65 |
+
|
66 |
+
|
67 |
+
class FlowDecoder(nn.Module):
|
68 |
+
# can reduce 25% of training time.
|
69 |
+
def __init__(self, ch_in):
|
70 |
+
super(FlowDecoder, self).__init__()
|
71 |
+
self.conv1 = conv(ch_in, 256, kernel_size=1)
|
72 |
+
self.conv2 = conv(256, 128, kernel_size=1)
|
73 |
+
self.conv3 = conv(256 + 128, 96, kernel_size=1)
|
74 |
+
self.conv4 = conv(96 + 128, 64, kernel_size=1)
|
75 |
+
self.conv5 = conv(96 + 64, 32, kernel_size=1)
|
76 |
+
|
77 |
+
self.feat_dim = 32
|
78 |
+
self.predict_flow = conv(64 + 32, 2, isReLU=False)
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
x1 = self.conv1(x)
|
82 |
+
x2 = self.conv2(x1)
|
83 |
+
x3 = self.conv3(torch.cat([x1, x2], dim=1))
|
84 |
+
x4 = self.conv4(torch.cat([x2, x3], dim=1))
|
85 |
+
x5 = self.conv5(torch.cat([x3, x4], dim=1))
|
86 |
+
flow = self.predict_flow(torch.cat([x4, x5], dim=1))
|
87 |
+
return flow
|
88 |
+
|
89 |
+
|
90 |
+
class FFV1DNN(nn.Module):
|
91 |
+
def __init__(self,
|
92 |
+
num_scales=8,
|
93 |
+
num_cells=256,
|
94 |
+
upsample_factor=8,
|
95 |
+
feature_channels=256,
|
96 |
+
scale_factor=16,
|
97 |
+
num_layers=6,
|
98 |
+
):
|
99 |
+
super(FFV1DNN, self).__init__()
|
100 |
+
self.ffv1 = V1(spatial_num=num_cells // num_scales, scale_num=num_scales, scale_factor=scale_factor,
|
101 |
+
kernel_radius=7, num_ft=num_cells // num_scales,
|
102 |
+
kernel_size=6, average_time=True)
|
103 |
+
self.v1_kz = 7
|
104 |
+
self.scale_factor = scale_factor
|
105 |
+
scale_each_level = np.exp(1 / (num_scales - 1) * np.log(1 / scale_factor))
|
106 |
+
self.scale_num = num_scales
|
107 |
+
self.scale_each_level = scale_each_level
|
108 |
+
v1_channel = self.ffv1.num_after_st
|
109 |
+
self.num_scales = num_scales
|
110 |
+
self.MT_channel = feature_channels
|
111 |
+
assert self.MT_channel == v1_channel
|
112 |
+
self.feature_channels = feature_channels
|
113 |
+
|
114 |
+
self.upsample_factor = upsample_factor
|
115 |
+
self.num_layers = num_layers
|
116 |
+
# convex upsampling: concat feature0 and flow as input
|
117 |
+
self.upsampler_1 = nn.Sequential(nn.Conv2d(2 + feature_channels, 256, 3, 1, 1),
|
118 |
+
nn.ReLU(inplace=True),
|
119 |
+
nn.Conv2d(256, 256, 3, 1, 1),
|
120 |
+
nn.ReLU(inplace=True),
|
121 |
+
nn.Conv2d(256, upsample_factor ** 2 * 9, 3, 1, 1))
|
122 |
+
self.decoder = FlowDecoder(feature_channels)
|
123 |
+
self.conv_feat = nn.ModuleList([conv(v1_channel, feature_channels, 1) for i in range(num_scales)])
|
124 |
+
self.MT = FeatureTransformer(d_model=feature_channels, num_layers=self.num_layers)
|
125 |
+
|
126 |
+
# 2*2*8*scale`
|
127 |
+
def upsample_flow(self, flow, feature, upsampler=None, bilinear=False, upsample_factor=4):
|
128 |
+
if bilinear:
|
129 |
+
up_flow = F.interpolate(flow, scale_factor=upsample_factor,
|
130 |
+
mode='bilinear', align_corners=True) * upsample_factor
|
131 |
+
else:
|
132 |
+
# convex upsampling
|
133 |
+
concat = torch.cat((flow, feature), dim=1)
|
134 |
+
mask = upsampler(concat)
|
135 |
+
b, flow_channel, h, w = flow.shape
|
136 |
+
mask = mask.view(b, 1, 9, upsample_factor, upsample_factor, h, w) # [B, 1, 9, K, K, H, W]
|
137 |
+
mask = torch.softmax(mask, dim=2)
|
138 |
+
|
139 |
+
up_flow = F.unfold(upsample_factor * flow, [3, 3], padding=1)
|
140 |
+
up_flow = up_flow.view(b, flow_channel, 9, 1, 1, h, w) # [B, 2, 9, 1, 1, H, W]
|
141 |
+
|
142 |
+
up_flow = torch.sum(mask * up_flow, dim=2) # [B, 2, K, K, H, W]
|
143 |
+
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) # [B, 2, K, H, K, W]
|
144 |
+
up_flow = up_flow.reshape(b, flow_channel, upsample_factor * h,
|
145 |
+
upsample_factor * w) # [B, 2, K*H, K*W]
|
146 |
+
|
147 |
+
return up_flow
|
148 |
+
|
149 |
+
def forward(self, image_list, mix_enable=True, layer=6):
|
150 |
+
if layer is not None:
|
151 |
+
self.MT.num_layers = layer
|
152 |
+
self.num_layers = layer
|
153 |
+
results_dict = {}
|
154 |
+
padding = self.v1_kz * self.scale_factor
|
155 |
+
with torch.no_grad():
|
156 |
+
if image_list[0].max() > 10:
|
157 |
+
image_list = [img / 255.0 for img in image_list] # [B, 1, H, W] 0-1
|
158 |
+
if image_list[0].shape[1] == 3:
|
159 |
+
# convert to gray using transform Gray = R*0.299 + G*0.587 + B*0.114
|
160 |
+
image_list = [img[:, 0, :, :] * 0.299 + img[:, 1, :, :] * 0.587 + img[:, 2, :, :] * 0.114 for img in
|
161 |
+
image_list]
|
162 |
+
image_list = [img.unsqueeze(1) for img in image_list]
|
163 |
+
|
164 |
+
B, _, H, W = image_list[0].shape
|
165 |
+
MT_size = (H // 8, W // 8)
|
166 |
+
with autocast(enabled=mix_enable):
|
167 |
+
# with torch.no_grad(): # TODO: only for test wheather a trainable V1 is needed.
|
168 |
+
st_component = self.ffv1(image_list)
|
169 |
+
# viz_img_seq(image_scale, if_debug=True)
|
170 |
+
if self.num_layers == 0:
|
171 |
+
motion_feature = [st_component]
|
172 |
+
flows = [self.decoder(feature) for feature in motion_feature]
|
173 |
+
flows_up = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
|
174 |
+
results_dict["flow_seq"] = flows_up
|
175 |
+
return results_dict
|
176 |
+
motion_feature, attn = self.MT.forward_save_mem(st_component)
|
177 |
+
flow_v1 = self.decoder(st_component)
|
178 |
+
|
179 |
+
flows = [flow_v1] + [self.decoder(feature) for feature in motion_feature]
|
180 |
+
flows_bi = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
|
181 |
+
flows_up = [flows_bi[0]] + \
|
182 |
+
[self.upsample_flow(flows, upsampler=self.upsampler_1, feature=attn, upsample_factor=8) for
|
183 |
+
flows, attn in zip(flows[1:], attn)]
|
184 |
+
assert len(flows_bi) == len(flows_up)
|
185 |
+
results_dict["flow_seq"] = flows_up
|
186 |
+
results_dict["flow_seq_bi"] = flows_bi
|
187 |
+
return results_dict
|
188 |
+
|
189 |
+
def forward_test(self, image_list, mix_enable=True, layer=6):
|
190 |
+
if layer is not None:
|
191 |
+
self.MT.num_layers = layer
|
192 |
+
self.num_layers = layer
|
193 |
+
results_dict = {}
|
194 |
+
padding = self.v1_kz * self.scale_factor
|
195 |
+
with torch.no_grad():
|
196 |
+
if image_list[0].max() > 10:
|
197 |
+
image_list = [img / 255.0 for img in image_list] # [B, 1, H, W] 0-1
|
198 |
+
|
199 |
+
B, _, H, W = image_list[0].shape
|
200 |
+
MT_size = (H // 8, W // 8)
|
201 |
+
with autocast(enabled=mix_enable):
|
202 |
+
st_component = self.ffv1(image_list)
|
203 |
+
# viz_img_seq(image_scale, if_debug=True)
|
204 |
+
if self.num_layers == 0:
|
205 |
+
motion_feature = [st_component]
|
206 |
+
flows = [self.decoder(feature) for feature in motion_feature]
|
207 |
+
flows_up = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
|
208 |
+
results_dict["flow_seq"] = flows_up
|
209 |
+
return results_dict
|
210 |
+
motion_feature, attn, _ = self.MT.forward_save_mem(st_component)
|
211 |
+
flow_v1 = self.decoder(st_component)
|
212 |
+
flows = [flow_v1] + [self.decoder(feature) for feature in motion_feature]
|
213 |
+
flows_bi = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
|
214 |
+
flows_up = [flows_bi[0]] + \
|
215 |
+
[self.upsample_flow(flows, upsampler=self.upsampler_1, feature=attn, upsample_factor=8) for
|
216 |
+
flows, attn in zip(flows[1:], attn)]
|
217 |
+
assert len(flows_bi) == len(flows_up)
|
218 |
+
results_dict["flow_seq"] = flows_up
|
219 |
+
results_dict["flow_seq_bi"] = flows_bi
|
220 |
+
return results_dict
|
221 |
+
|
222 |
+
def forward_viz(self, image_list, layer=None, x=50, y=50):
|
223 |
+
x = x / 100
|
224 |
+
y = y / 100
|
225 |
+
if layer is not None:
|
226 |
+
self.MT.num_layers = layer
|
227 |
+
results_dict = {}
|
228 |
+
padding = self.v1_kz * self.scale_factor
|
229 |
+
with torch.no_grad():
|
230 |
+
if image_list[0].max() > 10:
|
231 |
+
image_list = [img / 255.0 for img in image_list] # [B, 1, H, W] 0-1
|
232 |
+
if image_list[0].shape[1] == 3:
|
233 |
+
# convert to gray using transform Gray = R*0.299 + G*0.587 + B*0.114
|
234 |
+
image_list = [img[:, 0, :, :] * 0.299 + img[:, 1, :, :] * 0.587 + img[:, 2, :, :] * 0.114 for img in
|
235 |
+
image_list]
|
236 |
+
image_list = [img.unsqueeze(1) for img in image_list]
|
237 |
+
image_list_ori = deepcopy(image_list)
|
238 |
+
|
239 |
+
B, _, H, W = image_list[0].shape
|
240 |
+
MT_size = (H // 8, W // 8)
|
241 |
+
with autocast(enabled=True):
|
242 |
+
st_component = self.ffv1(image_list)
|
243 |
+
activation = self.ffv1.visualize_activation(st_component)
|
244 |
+
# viz_img_seq(image_scale, if_debug=True)
|
245 |
+
motion_feature, attn, attn_viz = self.MT(st_component)
|
246 |
+
flow_v1 = self.decoder(st_component)
|
247 |
+
|
248 |
+
flows = [flow_v1] + [self.decoder(feature) for feature in motion_feature]
|
249 |
+
flows_bi = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
|
250 |
+
flows_up = [flows_bi[0]] + \
|
251 |
+
[self.upsample_flow(flows, upsampler=self.upsampler_1, feature=attn, upsample_factor=8) for
|
252 |
+
flows, attn in zip(flows[1:], attn)]
|
253 |
+
assert len(flows_bi) == len(flows_up)
|
254 |
+
results_dict["flow_seq"] = flows_up
|
255 |
+
# select 1,3,5,7
|
256 |
+
flows_up = [flows_up[i] for i in [0, 2, 4]] + [flows_up[-1]]
|
257 |
+
attn_viz = [attn_viz[i] for i in [0, 2, 4]] + [attn_viz[-1]]
|
258 |
+
flow = plt_show_img_flow(image_list_ori, flows_up)
|
259 |
+
h = int(MT_size[0] * y)
|
260 |
+
w = int(MT_size[1] * x)
|
261 |
+
attention = plt_attention(attn_viz, h=h, w=w)
|
262 |
+
print("done")
|
263 |
+
results_dict["activation"] = activation
|
264 |
+
results_dict["attention"] = attention
|
265 |
+
results_dict["flow"] = flow
|
266 |
+
|
267 |
+
return results_dict
|
268 |
+
|
269 |
+
def num_parameters(self):
|
270 |
+
return sum(
|
271 |
+
[p.data.nelement() if p.requires_grad else 0 for p in self.parameters()])
|
272 |
+
|
273 |
+
def init_weights(self):
|
274 |
+
for layer in self.named_modules():
|
275 |
+
if isinstance(layer, nn.Conv2d):
|
276 |
+
nn.init.kaiming_normal_(layer.weight)
|
277 |
+
if layer.bias is not None:
|
278 |
+
nn.init.constant_(layer.bias, 0)
|
279 |
+
if isinstance(layer, nn.Conv1d):
|
280 |
+
nn.init.kaiming_normal_(layer.weight)
|
281 |
+
if layer.bias is not None:
|
282 |
+
nn.init.constant_(layer.bias, 0)
|
283 |
+
|
284 |
+
elif isinstance(layer, nn.ConvTranspose2d):
|
285 |
+
nn.init.kaiming_normal_(layer.weight)
|
286 |
+
if layer.bias is not None:
|
287 |
+
nn.init.constant_(layer.bias, 0)
|
288 |
+
|
289 |
+
@staticmethod
|
290 |
+
def demo(file=None):
|
291 |
+
import time
|
292 |
+
from utils import torch_utils as utils
|
293 |
+
frame_list = [torch.randn([4, 1, 512, 512], device="cuda")] * 11
|
294 |
+
model = FFV1DNN(num_scales=8, scale_factor=16, num_cells=256, upsample_factor=8, num_layers=6,
|
295 |
+
feature_channels=256).cuda()
|
296 |
+
if file is not None:
|
297 |
+
model = utils.restore_model(model, file)
|
298 |
+
print(model.num_parameters())
|
299 |
+
for i in range(100):
|
300 |
+
start = time.time()
|
301 |
+
output = model.forward_viz(frame_list, layer=7)
|
302 |
+
# print(output["flow_seq"][-1])
|
303 |
+
torch.mean(output["flow_seq"][-1]).backward()
|
304 |
+
print(torch.any(torch.isnan(output["flow_seq"][-1])))
|
305 |
+
end = time.time()
|
306 |
+
print(end - start)
|
307 |
+
print("#================================++#")
|
308 |
+
|
309 |
+
|
310 |
+
if __name__ == '__main__':
|
311 |
+
FFV1DNN.demo(None)
|