Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| import torch.nn.functional as F | |
| # Import GPT2 Model and Tokenizer | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
| # Import T5 Model and Tokenizer | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| st.title("Text Presso Machine ☕️") | |
| models = { | |
| "T5 Small": "ZinebSN/T5_summarizer", | |
| "GPT2": "ZinebSN/GPT2_summarizer" | |
| } | |
| selected_model = st.radio("Select Model", list(models.keys())) | |
| model_name = models[selected_model] | |
| if selected_model=='GPT2': | |
| tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
| model = GPT2LMHeadModel.from_pretrained(model_name) | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| # Inference function for GPT2 | |
| def gpt2_summarize(input_text, tokenizer, model, length): | |
| text=tokenizer.encode_plus(f'<bos> {input_text} <sep>', truncation=True, max_length=1024).input_ids | |
| text_length=len(text) | |
| text = torch.tensor(text, dtype=torch.long) | |
| text = text.unsqueeze(0) | |
| generated = text | |
| with torch.no_grad(): | |
| for _ in range(length): | |
| inputs = {'input_ids': generated} | |
| outputs = model(**inputs) | |
| next_token_logits = outputs[0][0, -1, :] | |
| next_token = torch.multinomial(F.softmax(next_token_logits, dim=-1), num_samples=1) | |
| generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1) | |
| generated=generated[:, -1024:] | |
| generated = generated[0, text_length:] | |
| text = tokenizer.convert_ids_to_tokens(generated,skip_special_tokens=True) | |
| text = tokenizer.convert_tokens_to_string(text) | |
| return text | |
| # Inference function for T5 | |
| def t5_summarize(input_text, tokenizer, model): | |
| inputs=tokenizer('summarize: '+input_text, truncation=True, padding='max_length', max_length=600, return_tensors='pt') | |
| output_sequence=model.generate(input_ids=inputs["input_ids"],attention_mask=inputs["attention_mask"], max_new_tokens=100) | |
| summary = tokenizer.batch_decode(output_sequence, skip_special_tokens=True) | |
| return summary[0] | |
| input_text=st.text_area("Input the text to summarize","", height=300) | |
| if st.button("Summarize"): | |
| st.text("It may take a minute or two.") | |
| nwords=len(input_text.split(" ")) | |
| if selected_model=='GPT2': | |
| summary=gpt2_summarize(input_text, tokenizer, model, 30) | |
| else: | |
| summary=t5_summarize(input_text, tokenizer, model) | |
| st.header("Summary") | |
| st.markdown(summary) |