lavie_gradio / vsr /models /temporal_module.py
Zhouyan248's picture
add gradio
24d19d7
raw
history blame contribute delete
No virus
27.5 kB
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
import torchvision
# from torch_utils.ops import grid_sample_gradfix
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.attention import FeedForward
# from diffusers.models.attention_processor import Attention
try:
from .diffusers_attention import CrossAttention
from .resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN
except:
from diffusers_attention import CrossAttention
from resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN
from einops import rearrange, repeat
import math
import pdb
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def grid_sample_align(input, grid):
return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=True)
@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class EmptyTemporalModule3D(nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None):
return hidden_states
class TemporalModule3D(nn.Module):
def __init__(
self,
in_channels=None,
out_channels=None,
num_attention_layers=None,
num_attention_head=8,
attention_head_dim=None,
cross_attention_dim=768,
temb_channels=512,
dropout=0.,
attention_bias=False,
activation_fn="geglu",
only_cross_attention=False,
upcast_attention=False,
norm_num_groups=8,
use_linear_projection=True,
use_scale_shift=False, # set True always produce nan loss, I don't know why
attention_block_types: Tuple[str]=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
use_dcn_warpping=None,
use_deformable_conv=None,
attention_dim_div: int = None,
video_condition=False,
):
super().__init__()
assert len(attention_block_types) == 2
self.use_scale_shift = use_scale_shift
self.video_condition = video_condition
self.non_linearity = nn.SiLU()
# 1. 3d cnn
if self.video_condition:
video_condition_dim = int(out_channels//4)
self.v_cond_conv = ResnetBlock3D(in_channels=3, out_channels=video_condition_dim, temb_channels=temb_channels, groups=3, groups_out=32)
self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels+video_condition_dim, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels)
else:
self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels)
self.resblocks_3d_s = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, groups=32, groups_out=32)
# 2. transformer blocks
if not (attention_block_types[0]=='' and attention_block_types[1]==''):
attentions = TemporalTransformer3DModel(
num_attention_heads=num_attention_head,
attention_head_dim=attention_head_dim if attention_head_dim is not None else in_channels // num_attention_head // attention_dim_div,
in_channels=in_channels,
num_layers=num_attention_layers,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
activation_fn=activation_fn,
num_embeds_ada_norm=1000, # adaptive norm for timestep embedding injection
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
use_dcn_warpping=use_dcn_warpping,
use_deformable_conv=use_deformable_conv,
)
self.attentions = nn.ModuleList([attentions])
if use_scale_shift:
self.scale_shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels * 2, kernel_size=1, stride=1, padding=0))
else:
self.shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels, kernel_size=1, stride=1, padding=0))
def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None):
input_tensor = hidden_states
if self.video_condition:
# obtain video attention
assert condition_video is not None
if isinstance(condition_video, dict):
condition_video = condition_video[hidden_states.shape[-1]]
hidden_condition = self.v_cond_conv(condition_video, temb)
hidden_states = torch.cat([hidden_states, hidden_condition], dim=1)
# 3DCNN
hidden_states = self.resblocks_3d_t(hidden_states, temb)
hidden_states = self.resblocks_3d_s(hidden_states, temb)
if hasattr(self, "attentions"):
for attn in self.attentions:
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timesteps).sample
if self.use_scale_shift:
hidden_states = self.scale_shift_conv(hidden_states)
scale, shift = torch.chunk(hidden_states, chunks=2, dim=1)
hidden_states = (1 + scale) * input_tensor + shift
else:
hidden_states = self.shift_conv(hidden_states)
hidden_states = input_tensor + hidden_states
return hidden_states
class TemporalTransformer3DModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
num_attention_heads=None,
attention_head_dim=None,
in_channels=None,
num_layers=None,
dropout=None,
norm_num_groups=None,
cross_attention_dim=None,
attention_bias=None,
activation_fn=None,
num_embeds_ada_norm=None,
use_linear_projection=None,
only_cross_attention=None,
upcast_attention=None,
attention_block_types=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
use_dcn_warpping=None,
use_deformable_conv=None,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
use_dcn_warpping=use_dcn_warpping,
use_deformable_conv=use_deformable_conv,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if use_linear_projection:
self.proj_out = nn.Linear(inner_dim, in_channels)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
# Input
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
if encoder_hidden_states is not None:
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
hidden_states = self.proj_in(hidden_states)
# Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
video_length=video_length
)
# Output
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
)
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
)
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
if not return_dict:
return (output,)
return TemporalTransformer3DModelOutput(sample=output)
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim=None,
num_attention_heads=None,
attention_head_dim=None,
dropout=None,
cross_attention_dim=None,
activation_fn=None,
num_embeds_ada_norm=None,
attention_bias=None,
only_cross_attention=None,
upcast_attention=None,
attention_block_types=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
use_dcn_warpping=None,
use_deformable_conv=None,
):
super().__init__()
assert len(attention_block_types) == 2
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm = num_embeds_ada_norm is not None
self.use_dcn_warpping = use_dcn_warpping
# 1. Spatial-Attn (self)
if not attention_block_types[0] == '':
self.attn_spatial = VersatileSelfAttention(
attention_mode=attention_block_types[0],
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
)
nn.init.zeros_(self.attn_spatial.to_out[0].weight.data)
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
# 2. Temporal-Attn (self)
self.attn_temporal = VersatileSelfAttention(
attention_mode=attention_block_types[1],
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
)
nn.init.zeros_(self.attn_temporal.to_out[0].weight.data)
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
self.dcn_module = WarpModule(
in_channels=dim,
use_deformable_conv=use_deformable_conv,
) if use_dcn_warpping else None
# 3. Feed-forward
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.norm3 = nn.LayerNorm(dim)
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: None):
if not is_xformers_available():
print("Here is how to install it")
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
" available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
if hasattr(self, "attn_spatial"):
self.attn_spatial._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
# 1. Spatial-Attention
if hasattr(self, "attn_spatial") and hasattr(self, "norm1"):
norm_hidden_states = self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
hidden_states = self.attn_spatial(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
# 2. Temporal-Attention
norm_hidden_states = self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
if not self.use_dcn_warpping:
hidden_states = self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
else:
hidden_states = self.dcn_module(
hidden_states,
offset_hidden_states=self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length),
)
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
class VersatileSelfAttention(CrossAttention):
def __init__(
self,
attention_mode=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
*args, **kwargs
):
super().__init__(*args, **kwargs)
assert attention_mode in ("Temporal", "Spatial", "CrossFrame", "SpatialTemporalShift", None)
assert cross_frame_attention_mode in ("0_i-1", "i-1_i", "0_i-1_i", "i-1_i_i+1", None)
self.attention_mode = attention_mode
self.cross_frame_attention_mode = cross_frame_attention_mode
self.temporal_shift_fold_div = temporal_shift_fold_div
self.temporal_shift_direction = temporal_shift_direction
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"],
dropout=0.,
max_len=temporal_position_encoding_max_len
) if temporal_position_encoding else None
def temporal_token_concat(self, tensor, video_length):
# print("### temporal token concat")
current_frame_index = torch.arange(video_length)
former_frame_index = current_frame_index - 1
former_frame_index[0] = 0
later_frame_index = current_frame_index + 1
later_frame_index[-1] = -1
# (b f) d c
tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length)
if self.cross_frame_attention_mode == "0_i-1":
tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index]], dim=2)
elif self.cross_frame_attention_mode == "i-1_i":
tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2)
elif self.cross_frame_attention_mode == "0_i-1_i":
tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2)
elif self.cross_frame_attention_mode == "i-1_i_i+1":
tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index], tensor[:, later_frame_index]], dim=2)
else:
raise NotImplementedError
tensor = rearrange(tensor, "b f d c -> (b f) d c")
return tensor
def temporal_shift(self, tensor, video_length):
# print("### temporal shift")
# (b f) d c
tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length)
n_channels = tensor.shape[-1]
fold = n_channels // self.temporal_shift_fold_div
if self.temporal_shift_direction != "right":
raise NotImplementedError
tensor_out = torch.zeros_like(tensor)
tensor_out[:, 1:, :, :fold] = tensor[:, :-1, :, :fold]
tensor_out[:, :, :, fold:] = tensor[:, :, :, fold:]
tensor_out = rearrange(tensor_out, "b f d c -> (b f) d c")
return tensor_out
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
# pdb.set_trace()
batch_size, sequence_length, _ = hidden_states.shape
assert encoder_hidden_states is None
# (b f) d c
if self.attention_mode == "Temporal":
# print("### temporal reshape")
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states)
encoder_hidden_states = encoder_hidden_states
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
raise NotImplementedError
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
if self.attention_mode == "SpatialTemporalShift":
key = self.temporal_shift(key, video_length=video_length)
value = self.temporal_shift(value, video_length=video_length)
elif self.attention_mode == "CrossFrame":
key = self.temporal_token_concat(key, video_length=video_length)
value = self.temporal_token_concat(value, video_length=video_length)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if self.attention_mode == "Temporal":
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
class WarpModule(nn.Module):
def __init__(
self,
in_channels=None,
use_deformable_conv=None,
):
super().__init__()
self.use_deformable_conv = use_deformable_conv
self.conv = None
self.dcn_weight = None
if use_deformable_conv:
self.conv = nn.Conv2d(in_channels*2, 27, kernel_size=3, stride=1, padding=1)
self.dcn_weight = nn.Parameter(torch.randn(in_channels, in_channels, 3, 3) / np.sqrt(in_channels * 3 * 3))
self.alpha = nn.Parameter(torch.zeros(1, in_channels, 1, 1))
else:
self.conv = zero_module(nn.Conv2d(in_channels, 2, kernel_size=3, stride=1, padding=1))
def forward(self, hidden_states, offset_hidden_states):
# (b f) d c
spatial_dim = hidden_states.shape[1]
size = int(spatial_dim ** 0.5)
assert size ** 2 == spatial_dim
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=size)
offset_hidden_states = rearrange(offset_hidden_states, "b (h w) c -> b c h w", h=size)
concat_hidden_states = torch.cat([hidden_states, offset_hidden_states], dim=1)
input_tensor = hidden_states
if self.use_deformable_conv:
offset_x, offset_y, offsets_mask = torch.chunk(self.conv(concat_hidden_states), chunks=3, dim=1)
offsets_mask = offsets_mask.sigmoid() * 2
offsets = torch.cat([offset_x, offset_y], dim=1)
hidden_states = torchvision.ops.deform_conv2d(
hidden_states,
offset=offsets,
weight=self.dcn_weight,
mask=offsets_mask,
padding=1,
)
hidden_states = self.alpha * hidden_states + input_tensor
else:
offsets = self.conv(concat_hidden_states)
hidden_states = self.optical_flow_warping(hidden_states, offsets)
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
return hidden_states
@staticmethod
def optical_flow_warping(x, flo):
"""
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
pad_mode (optional): ref to https://pytorch.org/docs/stable/nn.functional.html#grid-sample
"zeros": use 0 for out-of-bound grid locations,
"border": use border values for out-of-bound grid locations
"""
dtype = x.dtype
if dtype != torch.float32:
x = x.to(torch.float32)
B, C, H, W = x.size()
# mesh grid
xx = torch.arange(0, W).view(1, -1).repeat(H, 1)
yy = torch.arange(0, H).view(-1, 1).repeat(1, W)
xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1)
yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1)
grid = torch.cat((xx, yy), 1).float().to(flo.device)
vgrid = grid + flo
# scale grid to [-1,1]
vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :].clone() / max(W - 1, 1) - 1.0
vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :].clone() / max(H - 1, 1) - 1.0
vgrid = vgrid.permute(0, 2, 3, 1)
# output = grid_sample_gradfix.grid_sample_align(x, vgrid)
output = grid_sample_align(x, vgrid)
#output = torch.nn.functional.grid_sample(x, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True)
mask = torch.ones_like(x)
# mask = grid_sample_gradfix.grid_sample_align(mask, vgrid)
mask = grid_sample_align(x, vgrid)
#mask = torch.nn.functional.grid_sample(mask, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True)
mask[mask < 0.9999] = 0
mask[mask > 0] = 1
results = output * mask
if dtype != torch.float32:
results = results.to(dtype)
return results
class AdaLayerNorm(nn.Module):
"""
Norm layer modified to incorporate timestep embeddings.
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
def forward(self, x, timestep):
timestep = repeat(timestep, "b -> (b r)", r=x.shape[0] // timestep.shape[0])
emb = self.linear(self.silu(self.emb(timestep))).unsqueeze(1) # (b f) 1 2d
scale, shift = torch.chunk(emb, 2, dim=-1)
x = self.norm(x) * (1 + scale) + shift
return x