lavie_gradio / vsr /models /temporal_module.py
Zhouyan248's picture
add gradio
24d19d7
raw
history blame
27.5 kB
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
import torchvision
# from torch_utils.ops import grid_sample_gradfix
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.attention import FeedForward
# from diffusers.models.attention_processor import Attention
try:
from .diffusers_attention import CrossAttention
from .resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN
except:
from diffusers_attention import CrossAttention
from resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN
from einops import rearrange, repeat
import math
import pdb
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def grid_sample_align(input, grid):
return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=True)
@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class EmptyTemporalModule3D(nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None):
return hidden_states
class TemporalModule3D(nn.Module):
def __init__(
self,
in_channels=None,
out_channels=None,
num_attention_layers=None,
num_attention_head=8,
attention_head_dim=None,
cross_attention_dim=768,
temb_channels=512,
dropout=0.,
attention_bias=False,
activation_fn="geglu",
only_cross_attention=False,
upcast_attention=False,
norm_num_groups=8,
use_linear_projection=True,
use_scale_shift=False, # set True always produce nan loss, I don't know why
attention_block_types: Tuple[str]=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
use_dcn_warpping=None,
use_deformable_conv=None,
attention_dim_div: int = None,
video_condition=False,
):
super().__init__()
assert len(attention_block_types) == 2
self.use_scale_shift = use_scale_shift
self.video_condition = video_condition
self.non_linearity = nn.SiLU()
# 1. 3d cnn
if self.video_condition:
video_condition_dim = int(out_channels//4)
self.v_cond_conv = ResnetBlock3D(in_channels=3, out_channels=video_condition_dim, temb_channels=temb_channels, groups=3, groups_out=32)
self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels+video_condition_dim, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels)
else:
self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels)
self.resblocks_3d_s = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, groups=32, groups_out=32)
# 2. transformer blocks
if not (attention_block_types[0]=='' and attention_block_types[1]==''):
attentions = TemporalTransformer3DModel(
num_attention_heads=num_attention_head,
attention_head_dim=attention_head_dim if attention_head_dim is not None else in_channels // num_attention_head // attention_dim_div,
in_channels=in_channels,
num_layers=num_attention_layers,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
activation_fn=activation_fn,
num_embeds_ada_norm=1000, # adaptive norm for timestep embedding injection
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
use_dcn_warpping=use_dcn_warpping,
use_deformable_conv=use_deformable_conv,
)
self.attentions = nn.ModuleList([attentions])
if use_scale_shift:
self.scale_shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels * 2, kernel_size=1, stride=1, padding=0))
else:
self.shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels, kernel_size=1, stride=1, padding=0))
def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None):
input_tensor = hidden_states
if self.video_condition:
# obtain video attention
assert condition_video is not None
if isinstance(condition_video, dict):
condition_video = condition_video[hidden_states.shape[-1]]
hidden_condition = self.v_cond_conv(condition_video, temb)
hidden_states = torch.cat([hidden_states, hidden_condition], dim=1)
# 3DCNN
hidden_states = self.resblocks_3d_t(hidden_states, temb)
hidden_states = self.resblocks_3d_s(hidden_states, temb)
if hasattr(self, "attentions"):
for attn in self.attentions:
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timesteps).sample
if self.use_scale_shift:
hidden_states = self.scale_shift_conv(hidden_states)
scale, shift = torch.chunk(hidden_states, chunks=2, dim=1)
hidden_states = (1 + scale) * input_tensor + shift
else:
hidden_states = self.shift_conv(hidden_states)
hidden_states = input_tensor + hidden_states
return hidden_states
class TemporalTransformer3DModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
num_attention_heads=None,
attention_head_dim=None,
in_channels=None,
num_layers=None,
dropout=None,
norm_num_groups=None,
cross_attention_dim=None,
attention_bias=None,
activation_fn=None,
num_embeds_ada_norm=None,
use_linear_projection=None,
only_cross_attention=None,
upcast_attention=None,
attention_block_types=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
use_dcn_warpping=None,
use_deformable_conv=None,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
use_dcn_warpping=use_dcn_warpping,
use_deformable_conv=use_deformable_conv,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if use_linear_projection:
self.proj_out = nn.Linear(inner_dim, in_channels)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
# Input
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
if encoder_hidden_states is not None:
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
hidden_states = self.proj_in(hidden_states)
# Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
video_length=video_length
)
# Output
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
)
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
)
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
if not return_dict:
return (output,)
return TemporalTransformer3DModelOutput(sample=output)
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim=None,
num_attention_heads=None,
attention_head_dim=None,
dropout=None,
cross_attention_dim=None,
activation_fn=None,
num_embeds_ada_norm=None,
attention_bias=None,
only_cross_attention=None,
upcast_attention=None,
attention_block_types=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
use_dcn_warpping=None,
use_deformable_conv=None,
):
super().__init__()
assert len(attention_block_types) == 2
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm = num_embeds_ada_norm is not None
self.use_dcn_warpping = use_dcn_warpping
# 1. Spatial-Attn (self)
if not attention_block_types[0] == '':
self.attn_spatial = VersatileSelfAttention(
attention_mode=attention_block_types[0],
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
)
nn.init.zeros_(self.attn_spatial.to_out[0].weight.data)
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
# 2. Temporal-Attn (self)
self.attn_temporal = VersatileSelfAttention(
attention_mode=attention_block_types[1],
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
)
nn.init.zeros_(self.attn_temporal.to_out[0].weight.data)
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
self.dcn_module = WarpModule(
in_channels=dim,
use_deformable_conv=use_deformable_conv,
) if use_dcn_warpping else None
# 3. Feed-forward
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.norm3 = nn.LayerNorm(dim)
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: None):
if not is_xformers_available():
print("Here is how to install it")
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
" available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
if hasattr(self, "attn_spatial"):
self.attn_spatial._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
# 1. Spatial-Attention
if hasattr(self, "attn_spatial") and hasattr(self, "norm1"):
norm_hidden_states = self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
hidden_states = self.attn_spatial(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
# 2. Temporal-Attention
norm_hidden_states = self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
if not self.use_dcn_warpping:
hidden_states = self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
else:
hidden_states = self.dcn_module(
hidden_states,
offset_hidden_states=self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length),
)
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
class VersatileSelfAttention(CrossAttention):
def __init__(
self,
attention_mode=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
*args, **kwargs
):
super().__init__(*args, **kwargs)
assert attention_mode in ("Temporal", "Spatial", "CrossFrame", "SpatialTemporalShift", None)
assert cross_frame_attention_mode in ("0_i-1", "i-1_i", "0_i-1_i", "i-1_i_i+1", None)
self.attention_mode = attention_mode
self.cross_frame_attention_mode = cross_frame_attention_mode
self.temporal_shift_fold_div = temporal_shift_fold_div
self.temporal_shift_direction = temporal_shift_direction
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"],
dropout=0.,
max_len=temporal_position_encoding_max_len
) if temporal_position_encoding else None
def temporal_token_concat(self, tensor, video_length):
# print("### temporal token concat")
current_frame_index = torch.arange(video_length)
former_frame_index = current_frame_index - 1
former_frame_index[0] = 0
later_frame_index = current_frame_index + 1
later_frame_index[-1] = -1
# (b f) d c
tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length)
if self.cross_frame_attention_mode == "0_i-1":
tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index]], dim=2)
elif self.cross_frame_attention_mode == "i-1_i":
tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2)
elif self.cross_frame_attention_mode == "0_i-1_i":
tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2)
elif self.cross_frame_attention_mode == "i-1_i_i+1":
tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index], tensor[:, later_frame_index]], dim=2)
else:
raise NotImplementedError
tensor = rearrange(tensor, "b f d c -> (b f) d c")
return tensor
def temporal_shift(self, tensor, video_length):
# print("### temporal shift")
# (b f) d c
tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length)
n_channels = tensor.shape[-1]
fold = n_channels // self.temporal_shift_fold_div
if self.temporal_shift_direction != "right":
raise NotImplementedError
tensor_out = torch.zeros_like(tensor)
tensor_out[:, 1:, :, :fold] = tensor[:, :-1, :, :fold]
tensor_out[:, :, :, fold:] = tensor[:, :, :, fold:]
tensor_out = rearrange(tensor_out, "b f d c -> (b f) d c")
return tensor_out
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
# pdb.set_trace()
batch_size, sequence_length, _ = hidden_states.shape
assert encoder_hidden_states is None
# (b f) d c
if self.attention_mode == "Temporal":
# print("### temporal reshape")
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states)
encoder_hidden_states = encoder_hidden_states
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
raise NotImplementedError
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
if self.attention_mode == "SpatialTemporalShift":
key = self.temporal_shift(key, video_length=video_length)
value = self.temporal_shift(value, video_length=video_length)
elif self.attention_mode == "CrossFrame":
key = self.temporal_token_concat(key, video_length=video_length)
value = self.temporal_token_concat(value, video_length=video_length)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if self.attention_mode == "Temporal":
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
class WarpModule(nn.Module):
def __init__(
self,
in_channels=None,
use_deformable_conv=None,
):
super().__init__()
self.use_deformable_conv = use_deformable_conv
self.conv = None
self.dcn_weight = None
if use_deformable_conv:
self.conv = nn.Conv2d(in_channels*2, 27, kernel_size=3, stride=1, padding=1)
self.dcn_weight = nn.Parameter(torch.randn(in_channels, in_channels, 3, 3) / np.sqrt(in_channels * 3 * 3))
self.alpha = nn.Parameter(torch.zeros(1, in_channels, 1, 1))
else:
self.conv = zero_module(nn.Conv2d(in_channels, 2, kernel_size=3, stride=1, padding=1))
def forward(self, hidden_states, offset_hidden_states):
# (b f) d c
spatial_dim = hidden_states.shape[1]
size = int(spatial_dim ** 0.5)
assert size ** 2 == spatial_dim
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=size)
offset_hidden_states = rearrange(offset_hidden_states, "b (h w) c -> b c h w", h=size)
concat_hidden_states = torch.cat([hidden_states, offset_hidden_states], dim=1)
input_tensor = hidden_states
if self.use_deformable_conv:
offset_x, offset_y, offsets_mask = torch.chunk(self.conv(concat_hidden_states), chunks=3, dim=1)
offsets_mask = offsets_mask.sigmoid() * 2
offsets = torch.cat([offset_x, offset_y], dim=1)
hidden_states = torchvision.ops.deform_conv2d(
hidden_states,
offset=offsets,
weight=self.dcn_weight,
mask=offsets_mask,
padding=1,
)
hidden_states = self.alpha * hidden_states + input_tensor
else:
offsets = self.conv(concat_hidden_states)
hidden_states = self.optical_flow_warping(hidden_states, offsets)
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
return hidden_states
@staticmethod
def optical_flow_warping(x, flo):
"""
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
pad_mode (optional): ref to https://pytorch.org/docs/stable/nn.functional.html#grid-sample
"zeros": use 0 for out-of-bound grid locations,
"border": use border values for out-of-bound grid locations
"""
dtype = x.dtype
if dtype != torch.float32:
x = x.to(torch.float32)
B, C, H, W = x.size()
# mesh grid
xx = torch.arange(0, W).view(1, -1).repeat(H, 1)
yy = torch.arange(0, H).view(-1, 1).repeat(1, W)
xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1)
yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1)
grid = torch.cat((xx, yy), 1).float().to(flo.device)
vgrid = grid + flo
# scale grid to [-1,1]
vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :].clone() / max(W - 1, 1) - 1.0
vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :].clone() / max(H - 1, 1) - 1.0
vgrid = vgrid.permute(0, 2, 3, 1)
# output = grid_sample_gradfix.grid_sample_align(x, vgrid)
output = grid_sample_align(x, vgrid)
#output = torch.nn.functional.grid_sample(x, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True)
mask = torch.ones_like(x)
# mask = grid_sample_gradfix.grid_sample_align(mask, vgrid)
mask = grid_sample_align(x, vgrid)
#mask = torch.nn.functional.grid_sample(mask, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True)
mask[mask < 0.9999] = 0
mask[mask > 0] = 1
results = output * mask
if dtype != torch.float32:
results = results.to(dtype)
return results
class AdaLayerNorm(nn.Module):
"""
Norm layer modified to incorporate timestep embeddings.
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
def forward(self, x, timestep):
timestep = repeat(timestep, "b -> (b r)", r=x.shape[0] // timestep.shape[0])
emb = self.linear(self.silu(self.emb(timestep))).unsqueeze(1) # (b f) 1 2d
scale, shift = torch.chunk(emb, 2, dim=-1)
x = self.norm(x) * (1 + scale) + shift
return x