Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image | |
def instantiate_from_config(config): | |
if not "target" in config: | |
raise KeyError("Expected key `target` to instantiate.") | |
return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
def get_obj_from_str(string, reload=False): | |
import importlib | |
module, cls = string.rsplit(".", 1) | |
if reload: | |
module_imp = importlib.import_module(module) | |
importlib.reload(module_imp) | |
return getattr(importlib.import_module(module, package=None), cls) | |
def tensor_detail(t): | |
assert type(t) == torch.Tensor | |
print(f"shape: {t.shape} mean: {t.mean():.2f}, std: {t.std():.2f}, min: {t.min():.2f}, max: {t.max():.2f}") | |
def drawRoundRec(draw, color, x, y, w, h, r): | |
drawObject = draw | |
'''Rounds''' | |
drawObject.ellipse((x, y, x + r, y + r), fill=color) | |
drawObject.ellipse((x + w - r, y, x + w, y + r), fill=color) | |
drawObject.ellipse((x, y + h - r, x + r, y + h), fill=color) | |
drawObject.ellipse((x + w - r, y + h - r, x + w, y + h), fill=color) | |
'''rec.s''' | |
drawObject.rectangle((x + r / 2, y, x + w - (r / 2), y + h), fill=color) | |
drawObject.rectangle((x, y + r / 2, x + w, y + h - (r / 2)), fill=color) | |
def do_resize_content(original_image: Image, scale_rate): | |
# resize image content wile retain the original image size | |
if scale_rate != 1: | |
# Calculate the new size after rescaling | |
new_size = tuple(int(dim * scale_rate) for dim in original_image.size) | |
# Resize the image while maintaining the aspect ratio | |
resized_image = original_image.resize(new_size) | |
# Create a new image with the original size and black background | |
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) | |
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) | |
padded_image.paste(resized_image, paste_position) | |
return padded_image | |
else: | |
return original_image | |
def add_stroke(img, color=(255, 255, 255), stroke_radius=3): | |
# color in R, G, B format | |
if isinstance(img, Image.Image): | |
assert img.mode == "RGBA" | |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA) | |
else: | |
assert img.shape[2] == 4 | |
gray = img[:,:, 3] | |
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY) | |
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) | |
res = cv2.drawContours(img, contours,-1, tuple(color)[::-1] + (255,), stroke_radius) | |
return Image.fromarray(cv2.cvtColor(res,cv2.COLOR_BGRA2RGBA)) | |
def make_blob(image_size=(512, 512), sigma=0.2): | |
""" | |
make 2D blob image with: | |
I(x, y)=1-\exp \left(-\frac{(x-H / 2)^2+(y-W / 2)^2}{2 \sigma^2 HS}\right) | |
""" | |
import numpy as np | |
H, W = image_size | |
x = np.arange(0, W, 1, float) | |
y = np.arange(0, H, 1, float) | |
x, y = np.meshgrid(x, y) | |
x0 = W // 2 | |
y0 = H // 2 | |
img = 1 - np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2 * H * W)) | |
return (img * 255).astype(np.uint8) |