Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from torch.utils.checkpoint import checkpoint | |
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel | |
import numpy as np | |
import open_clip | |
from PIL import Image | |
from ...util import default, count_params | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class IdentityEncoder(AbstractEncoder): | |
def encode(self, x): | |
return x | |
class ClassEmbedder(nn.Module): | |
def __init__(self, embed_dim, n_classes=1000, key="class", ucg_rate=0.1): | |
super().__init__() | |
self.key = key | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
self.n_classes = n_classes | |
self.ucg_rate = ucg_rate | |
def forward(self, batch, key=None, disable_dropout=False): | |
if key is None: | |
key = self.key | |
# this is for use in crossattn | |
c = batch[key][:, None] | |
if self.ucg_rate > 0.0 and not disable_dropout: | |
mask = 1.0 - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) | |
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1) | |
c = c.long() | |
c = self.embedding(c) | |
return c | |
def get_unconditional_conditioning(self, bs, device="cuda"): | |
uc_class = ( | |
self.n_classes - 1 | |
) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000) | |
uc = torch.ones((bs,), device=device) * uc_class | |
uc = {self.key: uc} | |
return uc | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class FrozenT5Embedder(AbstractEncoder): | |
"""Uses the T5 transformer encoder for text""" | |
def __init__( | |
self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True | |
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = T5Tokenizer.from_pretrained(version) | |
self.transformer = T5EncoderModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length # TODO: typical value? | |
if freeze: | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
# self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=True, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPEmbedder(AbstractEncoder): | |
"""Uses the CLIP transformer encoder for text (from huggingface)""" | |
LAYERS = ["last", "pooled", "hidden"] | |
def __init__( | |
self, | |
version="openai/clip-vit-large-patch14", | |
device="cuda", | |
max_length=77, | |
freeze=True, | |
layer="last", | |
layer_idx=None, | |
): # clip-vit-base-patch32 | |
super().__init__() | |
assert layer in self.LAYERS | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPTextModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
self.layer_idx = layer_idx | |
if layer == "hidden": | |
assert layer_idx is not None | |
assert 0 <= abs(layer_idx) <= 12 | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
# self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=True, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer( | |
input_ids=tokens, output_hidden_states=self.layer == "hidden" | |
) | |
if self.layer == "last": | |
z = outputs.last_hidden_state | |
elif self.layer == "pooled": | |
z = outputs.pooler_output[:, None, :] | |
else: | |
z = outputs.hidden_states[self.layer_idx] | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenOpenCLIPEmbedder(AbstractEncoder, nn.Module): | |
""" | |
Uses the OpenCLIP transformer encoder for text | |
""" | |
LAYERS = [ | |
# "pooled", | |
"last", | |
"penultimate", | |
] | |
def __init__( | |
self, | |
arch="ViT-H-14", | |
version="laion2b_s32b_b79k", | |
device="cuda", | |
max_length=77, | |
freeze=True, | |
layer="last", | |
ip_mode=None | |
): | |
"""_summary_ | |
Args: | |
ip_mode (str, optional): what is the image promcessing mode. Defaults to None. | |
""" | |
super().__init__() | |
assert layer in self.LAYERS | |
model, _, preprocess = open_clip.create_model_and_transforms( | |
arch, device=torch.device("cpu"), pretrained=version | |
) | |
if ip_mode is None: | |
del model.visual | |
self.model = model | |
self.preprocess = preprocess | |
self.device = device | |
self.max_length = max_length | |
self.ip_mode = ip_mode | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
if self.layer == "last": | |
self.layer_idx = 0 | |
elif self.layer == "penultimate": | |
self.layer_idx = 1 | |
else: | |
raise NotImplementedError() | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
tokens = open_clip.tokenize(text) | |
z = self.encode_with_transformer(tokens.to(self.device)) | |
return z | |
def forward_image(self, pil_image): | |
if isinstance(pil_image, Image.Image): | |
pil_image = [pil_image] | |
if isinstance(pil_image, torch.Tensor): | |
pil_image = pil_image.cpu().numpy() | |
if isinstance(pil_image, np.ndarray): | |
if pil_image.ndim == 3: | |
pil_image = pil_image[None, :, :, :] | |
pil_image = [Image.fromarray(x) for x in pil_image] | |
images = [] | |
for image in pil_image: | |
images.append(self.preprocess(image).to(self.device)) | |
image = torch.stack(images, 0) # to [b, 3, h, w] | |
if self.ip_mode == "global": | |
image_features = self.model.encode_image(image) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
elif "local" in self.ip_mode: | |
image_features = self.encode_image_with_transformer(image) | |
return image_features # b, l | |
def encode_image_with_transformer(self, x): | |
visual = self.model.visual | |
x = visual.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
# class embeddings and positional embeddings | |
x = torch.cat( | |
[visual.class_embedding.to(x.dtype) + \ | |
torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), | |
x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + visual.positional_embedding.to(x.dtype) | |
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in | |
# x = visual.patch_dropout(x) | |
x = visual.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
hidden = self.image_transformer_forward(x) | |
x = hidden[-2].permute(1, 0, 2) # LND -> NLD | |
return x | |
def image_transformer_forward(self, x): | |
encoder_states = () | |
trans = self.model.visual.transformer | |
for r in trans.resblocks: | |
if trans.grad_checkpointing and not torch.jit.is_scripting(): | |
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372 | |
x = checkpoint(r, x, None, None, None) | |
else: | |
x = r(x, attn_mask=None) | |
encoder_states = encoder_states + (x, ) | |
return encoder_states | |
def encode_with_transformer(self, text): | |
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] | |
x = x + self.model.positional_embedding | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.model.ln_final(x) | |
return x | |
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None): | |
for i, r in enumerate(self.model.transformer.resblocks): | |
if i == len(self.model.transformer.resblocks) - self.layer_idx: | |
break | |
if ( | |
self.model.transformer.grad_checkpointing | |
and not torch.jit.is_scripting() | |
): | |
x = checkpoint(r, x, attn_mask) | |
else: | |
x = r(x, attn_mask=attn_mask) | |
return x | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPT5Encoder(AbstractEncoder): | |
def __init__( | |
self, | |
clip_version="openai/clip-vit-large-patch14", | |
t5_version="google/t5-v1_1-xl", | |
device="cuda", | |
clip_max_length=77, | |
t5_max_length=77, | |
): | |
super().__init__() | |
self.clip_encoder = FrozenCLIPEmbedder( | |
clip_version, device, max_length=clip_max_length | |
) | |
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) | |
print( | |
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " | |
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params." | |
) | |
def encode(self, text): | |
return self(text) | |
def forward(self, text): | |
clip_z = self.clip_encoder.encode(text) | |
t5_z = self.t5_encoder.encode(text) | |
return [clip_z, t5_z] | |