BiRefNet_demo / models /baseline.py
ZhengPeng7's picture
Remove redundant part of our_ref in inference.
e2ce7e5
raw history blame
No virus
15.6 kB
import torch
import torch.nn as nn
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg16, vgg16_bn
from torchvision.models import resnet50
from kornia.filters import laplacian
from config import Config
from dataset import class_labels_TR_sorted
from models.backbones.build_backbone import build_backbone
from models.modules.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
from models.modules.lateral_blocks import BasicLatBlk
from models.modules.aspp import ASPP, ASPPDeformable
from models.modules.ing import *
from models.refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet
from models.refinement.stem_layer import StemLayer
class BiRefNet(nn.Module):
def __init__(self, bb_pretrained=True):
super(BiRefNet, self).__init__()
self.config = Config()
self.epoch = 1
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
channels = self.config.lateral_channels_in_collection
if self.config.auxiliary_classification:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.cls_head = nn.Sequential(
nn.Linear(channels[0], len(class_labels_TR_sorted))
)
if self.config.squeeze_block:
self.squeeze_module = nn.Sequential(*[
eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
])
self.decoder = Decoder(channels)
if self.config.locate_head:
self.locate_header = nn.ModuleList([
BasicDecBlk(channels[0], channels[-1]),
nn.Sequential(
nn.Conv2d(channels[-1], 1, 1, 1, 0),
)
])
if self.config.ender:
self.dec_end = nn.Sequential(
nn.Conv2d(1, 16, 3, 1, 1),
nn.Conv2d(16, 1, 3, 1, 1),
nn.ReLU(inplace=True),
)
# refine patch-level segmentation
if self.config.refine:
if self.config.refine == 'itself':
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3)
else:
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
if self.config.freeze_bb:
# Freeze the backbone...
print(self.named_parameters())
for key, value in self.named_parameters():
if 'bb.' in key and 'refiner.' not in key:
value.requires_grad = False
def forward_enc(self, x):
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
else:
x1, x2, x3, x4 = self.bb(x)
if self.config.mul_scl_ipt == 'cat':
B, C, H, W = x.shape
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
elif self.config.mul_scl_ipt == 'add':
B, C, H, W = x.shape
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
if self.config.cxt:
x4 = torch.cat(
(
*[
F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
][-len(self.config.cxt):],
x4
),
dim=1
)
return (x1, x2, x3, x4), class_preds
# def forward_loc(self, x):
# ########## Encoder ##########
# (x1, x2, x3, x4), class_preds = self.forward_enc(x)
# if self.config.squeeze_block:
# x4 = self.squeeze_module(x4)
# if self.config.locate_head:
# locate_preds = self.locate_header[1](
# F.interpolate(
# self.locate_header[0](
# F.interpolate(x4, size=x2.shape[2:], mode='bilinear', align_corners=True)
# ), size=x.shape[2:], mode='bilinear', align_corners=True
# )
# )
def forward_ori(self, x):
########## Encoder ##########
(x1, x2, x3, x4), class_preds = self.forward_enc(x)
if self.config.squeeze_block:
x4 = self.squeeze_module(x4)
########## Decoder ##########
features = [x, x1, x2, x3, x4]
if self.training and self.config.out_ref:
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
scaled_preds = self.decoder(features)
return scaled_preds, class_preds
def forward_ref(self, x, pred):
# refine patch-level segmentation
if pred.shape[2:] != x.shape[2:]:
pred = F.interpolate(pred, size=x.shape[2:], mode='bilinear', align_corners=True)
# pred = pred.sigmoid()
if self.config.refine == 'itself':
x = self.stem_layer(torch.cat([x, pred], dim=1))
scaled_preds, class_preds = self.forward_ori(x)
else:
scaled_preds = self.refiner([x, pred])
class_preds = None
return scaled_preds, class_preds
def forward_ref_end(self, x):
# remove the grids of concatenated preds
return self.dec_end(x) if self.config.ender else x
# def forward(self, x):
# if self.config.refine:
# scaled_preds, class_preds_ori = self.forward_ori(F.interpolate(x, size=(x.shape[2]//4, x.shape[3]//4), mode='bilinear', align_corners=True))
# class_preds_lst = [class_preds_ori]
# for _ in range(self.config.refine_iteration):
# scaled_preds_ref, class_preds_ref = self.forward_ref(x, scaled_preds[-1])
# scaled_preds += scaled_preds_ref
# class_preds_lst.append(class_preds_ref)
# else:
# scaled_preds, class_preds = self.forward_ori(x)
# class_preds_lst = [class_preds]
# return [scaled_preds, class_preds_lst] if self.training else scaled_preds
def forward(self, x):
scaled_preds, class_preds = self.forward_ori(x)
class_preds_lst = [class_preds]
return [scaled_preds, class_preds_lst] if self.training else scaled_preds
class Decoder(nn.Module):
def __init__(self, channels):
super(Decoder, self).__init__()
self.config = Config()
DecoderBlock = eval(self.config.dec_blk)
LateralBlock = eval(self.config.lat_blk)
if self.config.dec_ipt:
self.split = self.config.dec_ipt_split
N_dec_ipt = 64
DBlock = SimpleConvs
ic = 64
ipt_cha_opt = 1
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
else:
self.split = None
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
self.lateral_block4 = LateralBlock(channels[1], channels[1])
self.lateral_block3 = LateralBlock(channels[2], channels[2])
self.lateral_block2 = LateralBlock(channels[3], channels[3])
if self.config.ms_supervision:
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
if self.config.out_ref:
_N = 16
# self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
# self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
# self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
def get_patches_batch(self, x, p):
_size_h, _size_w = p.shape[2:]
patches_batch = []
for idx in range(x.shape[0]):
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
patches_x = []
for column_x in columns_x:
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
patch_sample = torch.cat(patches_x, dim=1)
patches_batch.append(patch_sample)
return torch.cat(patches_batch, dim=0)
def forward(self, features):
if self.training and self.config.out_ref:
outs_gdt_pred = []
outs_gdt_label = []
x, x1, x2, x3, x4, gdt_gt = features
else:
x, x1, x2, x3, x4 = features
outs = []
p4 = self.decoder_block4(x4)
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
_p3 = _p4 + self.lateral_block4(x3)
if self.config.dec_ipt:
patches_batch = self.get_patches_batch(x, _p3) if self.split else x
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
p3 = self.decoder_block3(_p3)
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
if self.config.out_ref:
p3_gdt = self.gdt_convs_3(p3)
if self.training:
# >> GT:
# m3 --dilation--> m3_dia
# G_3^gt * m3_dia --> G_3^m, which is the label of gradient
m3_dia = m3
gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
outs_gdt_label.append(gdt_label_main_3)
# >> Pred:
# p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
# F_3^G --sigmoid--> A_3^G
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
outs_gdt_pred.append(gdt_pred_3)
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
# >> Finally:
# p3 = p3 * A_3^G
p3 = p3 * gdt_attn_3
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
_p2 = _p3 + self.lateral_block3(x2)
if self.config.dec_ipt:
patches_batch = self.get_patches_batch(x, _p2) if self.split else x
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
p2 = self.decoder_block2(_p2)
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
if self.config.out_ref:
p2_gdt = self.gdt_convs_2(p2)
if self.training:
# >> GT:
m2_dia = m2
gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
outs_gdt_label.append(gdt_label_main_2)
# >> Pred:
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
outs_gdt_pred.append(gdt_pred_2)
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
# >> Finally:
p2 = p2 * gdt_attn_2
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
_p1 = _p2 + self.lateral_block2(x1)
if self.config.dec_ipt:
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
_p1 = self.decoder_block1(_p1)
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
if self.config.dec_ipt:
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
p1_out = self.conv_out1(_p1)
if self.config.ms_supervision:
outs.append(m4)
outs.append(m3)
outs.append(m2)
outs.append(p1_out)
return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
class SimpleConvs(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, inter_channels=64
) -> None:
super().__init__()
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
def forward(self, x):
return self.conv_out(self.conv1(x))