Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
def build_act_layer(act_layer): | |
if act_layer == 'ReLU': | |
return nn.ReLU(inplace=True) | |
elif act_layer == 'SiLU': | |
return nn.SiLU(inplace=True) | |
elif act_layer == 'GELU': | |
return nn.GELU() | |
raise NotImplementedError(f'build_act_layer does not support {act_layer}') | |
def build_norm_layer(dim, | |
norm_layer, | |
in_format='channels_last', | |
out_format='channels_last', | |
eps=1e-6): | |
layers = [] | |
if norm_layer == 'BN': | |
if in_format == 'channels_last': | |
layers.append(to_channels_first()) | |
layers.append(nn.BatchNorm2d(dim)) | |
if out_format == 'channels_last': | |
layers.append(to_channels_last()) | |
elif norm_layer == 'LN': | |
if in_format == 'channels_first': | |
layers.append(to_channels_last()) | |
layers.append(nn.LayerNorm(dim, eps=eps)) | |
if out_format == 'channels_first': | |
layers.append(to_channels_first()) | |
else: | |
raise NotImplementedError( | |
f'build_norm_layer does not support {norm_layer}') | |
return nn.Sequential(*layers) | |
class to_channels_first(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return x.permute(0, 3, 1, 2) | |
class to_channels_last(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return x.permute(0, 2, 3, 1) | |