BiRefNet_demo / app.py
ZhengPeng7's picture
Fix app.py (#2)
8aa2ae3 verified
raw
history blame
4.12 kB
import os
from glob import glob
import cv2
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
import gradio as gr
import spaces
from gradio_imageslider import ImageSlider
torch.jit.script = lambda f: f
from models.baseline import BiRefNet
from config import Config
config = Config()
device = config.device
def array_to_pil_image(image, size=(1024, 1024)):
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
image = Image.fromarray(image).convert('RGB')
return image
class ImagePreprocessor():
def __init__(self, resolution=(1024, 1024)) -> None:
self.transform_image = transforms.Compose([
# transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image()
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image):
image = self.transform_image(image)
return image
model = BiRefNet(bb_pretrained=False)
state_dict = './BiRefNet_ep580.pth'
if os.path.exists(state_dict):
birefnet_dict = torch.load(state_dict, map_location="cpu")
unwanted_prefix = '_orig_mod.'
for k, v in list(birefnet_dict.items()):
if k.startswith(unwanted_prefix):
birefnet_dict[k[len(unwanted_prefix):]] = birefnet_dict.pop(k)
model.load_state_dict(birefnet_dict)
model = model.to(device)
model.eval()
# def predict(image_1, image_2):
# images = [image_1, image_2]
@spaces.GPU
def predict(image, resolution):
resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution
# Image is a RGB numpy array.
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
images = [image]
image_shapes = [image.shape[:2] for image in images]
images = [array_to_pil_image(image, resolution) for image in images]
image_preprocessor = ImagePreprocessor(resolution=resolution)
images_proc = []
for image in images:
images_proc.append(image_preprocessor.proc(image))
images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc])
with torch.no_grad():
scaled_preds_tensor = model(images_proc.to(device))[-1].sigmoid() # BiRefNet needs an sigmoid activation outside the forward.
preds = []
for image_shape, pred_tensor in zip(image_shapes, scaled_preds_tensor):
if device == 'cuda':
pred_tensor = pred_tensor.cpu()
preds.append(torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy())
image_preds = []
for image, pred in zip(images, preds):
image = image.resize(pred.shape[::-1])
pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1)
image_preds.append((pred * image).astype(np.uint8))
return image, image_preds[0]
examples = [[_] for _ in glob('materials/examples/*')][:]
# Add the option of resolution in a text box.
for idx_example, example in enumerate(examples):
examples[idx_example].append('1024x1024')
examples.append(examples[-1].copy())
examples[-1][1] = '512x512'
demo = gr.Interface(
fn=predict,
inputs=['image', gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `512x512`. Higher resolutions can be much slower for inference.", label="Resolution")],
outputs=ImageSlider(),
examples=examples,
title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`',
description=('Upload a picture, our model will give you the binary maps of the highly accurate segmentation of the salient objects in it. :)'
'\nThe resolution used in our training was `1024x1024`, which is too much burden for the huggingface free spaces like this one (cost nearly 40s). Please set resolution as more than `768x768` for images with many texture details to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.')
)
demo.launch(debug=True)