BiRefNet_demo / models /modules /decoder_blocks.py
ZhengPeng7's picture
Initialization on my BiRefNet online demo.
6be800b
raw
history blame
3.87 kB
import torch
import torch.nn as nn
from models.modules.aspp import ASPP, ASPPDeformable
from models.modules.attentions import PSA, SGE
from config import Config
config = Config()
class BasicDecBlk(nn.Module):
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
super(BasicDecBlk, self).__init__()
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
self.relu_in = nn.ReLU(inplace=True)
if config.dec_att == 'ASPP':
self.dec_att = ASPP(in_channels=inter_channels)
elif config.dec_att == 'ASPPDeformable':
self.dec_att = ASPPDeformable(in_channels=inter_channels)
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
self.bn_in = nn.BatchNorm2d(inter_channels)
self.bn_out = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv_in(x)
x = self.bn_in(x)
x = self.relu_in(x)
if hasattr(self, 'dec_att'):
x = self.dec_att(x)
x = self.conv_out(x)
x = self.bn_out(x)
return x
class ResBlk(nn.Module):
def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
super(ResBlk, self).__init__()
if out_channels is None:
out_channels = in_channels
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
self.bn_in = nn.BatchNorm2d(inter_channels)
self.relu_in = nn.ReLU(inplace=True)
if config.dec_att == 'ASPP':
self.dec_att = ASPP(in_channels=inter_channels)
elif config.dec_att == 'ASPPDeformable':
self.dec_att = ASPPDeformable(in_channels=inter_channels)
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
self.bn_out = nn.BatchNorm2d(out_channels)
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
def forward(self, x):
_x = self.conv_resi(x)
x = self.conv_in(x)
x = self.bn_in(x)
x = self.relu_in(x)
if hasattr(self, 'dec_att'):
x = self.dec_att(x)
x = self.conv_out(x)
x = self.bn_out(x)
return x + _x
class HierarAttDecBlk(nn.Module):
def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
super(HierarAttDecBlk, self).__init__()
if out_channels is None:
out_channels = in_channels
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
self.split_y = 8 # must be divided by channels of all intermediate features
self.split_x = 8
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
self.psa = PSA(inter_channels*self.split_y*self.split_x, S=config.batch_size)
self.sge = SGE(groups=config.batch_size)
if config.dec_att == 'ASPP':
self.dec_att = ASPP(in_channels=inter_channels)
elif config.dec_att == 'ASPPDeformable':
self.dec_att = ASPPDeformable(in_channels=inter_channels)
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
def forward(self, x):
x = self.conv_in(x)
N, C, H, W = x.shape
x_patchs = x.reshape(N, -1, H//self.split_y, W//self.split_x)
# Hierarchical attention: group attention X patch spatial attention
x_patchs = self.psa(x_patchs) # Group Channel Attention -- each group is a single image
x_patchs = self.sge(x_patchs) # Patch Spatial Attention
x = x.reshape(N, C, H, W)
if hasattr(self, 'dec_att'):
x = self.dec_att(x)
x = self.conv_out(x)
return x