|
import os |
|
import yaml |
|
import torch |
|
import argparse |
|
import numpy as np |
|
import gradio as gr |
|
|
|
from PIL import Image |
|
from copy import deepcopy |
|
from torch.nn.parallel import DataParallel, DistributedDataParallel |
|
|
|
from huggingface_hub import hf_hub_download |
|
from gradio_imageslider import ImageSlider |
|
|
|
|
|
from models import seemore |
|
|
|
|
|
def dict2namespace(config): |
|
namespace = argparse.Namespace() |
|
for key, value in config.items(): |
|
if isinstance(value, dict): |
|
new_value = dict2namespace(value) |
|
else: |
|
new_value = value |
|
setattr(namespace, key, new_value) |
|
return namespace |
|
|
|
def load_img (filename, norm=True,): |
|
img = np.array(Image.open(filename).convert("RGB")) |
|
h, w = img.shape[:2] |
|
|
|
if w > 1920 or h > 1080: |
|
new_h, new_w = h // 4, w // 4 |
|
img = np.array(Image.fromarray(img).resize((new_w, new_h), Image.BICUBIC)) |
|
|
|
if norm: |
|
img = img / 255. |
|
img = img.astype(np.float32) |
|
return img |
|
|
|
def process_img (image): |
|
img = np.array(image) |
|
img = img / 255. |
|
img = img.astype(np.float32) |
|
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
x_hat = model(y) |
|
|
|
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy() |
|
restored_img = np.clip(restored_img, 0. , 1.) |
|
|
|
restored_img = (restored_img * 255.0).round().astype(np.uint8) |
|
|
|
return (image, Image.fromarray(restored_img)) |
|
|
|
def load_network(net, load_path, strict=True, param_key='params'): |
|
if isinstance(net, (DataParallel, DistributedDataParallel)): |
|
net = net.module |
|
load_net = torch.load(load_path, map_location=lambda storage, loc: storage) |
|
if param_key is not None: |
|
if param_key not in load_net and 'params' in load_net: |
|
param_key = 'params' |
|
load_net = load_net[param_key] |
|
|
|
for k, v in deepcopy(load_net).items(): |
|
if k.startswith('module.'): |
|
load_net[k[7:]] = v |
|
load_net.pop(k) |
|
net.load_state_dict(load_net, strict=strict) |
|
|
|
CONFIG = "configs/SMFANet_plus_x4SR.yml" |
|
hf_hub_download(repo_id="eduardzamfir/SeemoRe-T", filename="SeemoRe_T_X4.pth", local_dir="./") |
|
MODEL_NAME = "SeemoRe_T_X4.pth" |
|
|
|
|
|
with open(os.path.join(CONFIG), "r") as f: |
|
config = yaml.safe_load(f) |
|
|
|
cfg = dict2namespace(config) |
|
|
|
device = torch.device("cpu") |
|
model = seemore.SeemoRe(scale=cfg.model.scale, in_chans=cfg.model.in_chans, |
|
num_experts=cfg.model.num_experts, num_layers=cfg.model.num_layers, embedding_dim=cfg.model.embedding_dim, |
|
img_range=cfg.model.img_range, use_shuffle=cfg.model.use_shuffle, global_kernel_size=cfg.model.global_kernel_size, |
|
recursive=cfg.model.recursive, lr_space=cfg.model.lr_space, topk=cfg.model.topk) |
|
|
|
model = model.to(device) |
|
print ("IMAGE MODEL CKPT:", MODEL_NAME) |
|
load_network(model, MODEL_NAME, strict=True, param_key='params') |
|
|
|
|
|
|
|
|
|
title = "See More Details" |
|
description = ''' ### See More Details: Efficient Image Super-Resolution by Experts Mining - ICML 2024, Vienna, Austria |
|
|
|
#### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao), [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/) |
|
|
|
#### **<sup>1</sup> University of Würzburg, Germany - <sup>2</sup> Shanghai Jiao Tong University, China - <sup>3</sup> ETH Zürich, Switzerland** |
|
#### **<sup>*</sup> Corresponding authors** |
|
|
|
<details> |
|
<summary> <b> Abstract</b> (click me to read)</summary> |
|
<p> |
|
Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings |
|
</p> |
|
</details> |
|
|
|
|
|
#### Drag the slider on the super-resolution image left and right to see the changes in the image details. SeemoRe performs x4 upscaling on the input image. |
|
|
|
<br> |
|
|
|
<code> |
|
@inproceedings{zamfir2024details, |
|
title={See More Details: Efficient Image Super-Resolution by Experts Mining}, |
|
author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte}, |
|
booktitle={International Conference on Machine Learning}, |
|
year={2024}, |
|
organization={PMLR} |
|
} |
|
</code> |
|
<br> |
|
''' |
|
|
|
|
|
article = "<p style='text-align: center'><a href='https://eduardzamfir.github.io/seemore' target='_blank'>See More Details: Efficient Image Super-Resolution by Experts Mining</a></p>" |
|
|
|
|
|
examples = [ |
|
['images/0801x4.png'], |
|
['images/0840x4.png'], |
|
['images/0841x4.png'], |
|
['images/0870x4.png'], |
|
['images/0878x4.png'], |
|
['images/0884x4.png'], |
|
['images/0900x4.png'], |
|
['images/img002x4.png'], |
|
['images/img003x4.png'], |
|
['images/img004x4.png'], |
|
['images/img035x4.png'], |
|
['images/img053x4.png'], |
|
['images/img064x4.png'], |
|
['images/img083x4.png'], |
|
['images/img092x4.png'], |
|
] |
|
|
|
css = """ |
|
.image-frame img, .image-container img { |
|
width: auto; |
|
height: auto; |
|
max-width: none; |
|
} |
|
""" |
|
|
|
demo = gr.Interface( |
|
fn=process_img, |
|
inputs=[gr.Image(type="pil", label="Input", value="images/0878x4.png"),], |
|
outputs=ImageSlider(label="Super-Resolved Image", |
|
type="pil", |
|
show_download_button=True, |
|
), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
css=css, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |