Spaces:
Sleeping
Sleeping
import json | |
import gradio as gr | |
import requests | |
from lagent.schema import AgentStatusCode | |
import os | |
os.system("python -m mindsearch.app --lang cn --model_format internlm_silicon &") | |
PLANNER_HISTORY = [] | |
SEARCHER_HISTORY = [] | |
def rst_mem(history_planner: list, history_searcher: list): | |
''' | |
Reset the chatbot memory. | |
''' | |
history_planner = [] | |
history_searcher = [] | |
if PLANNER_HISTORY: | |
PLANNER_HISTORY.clear() | |
return history_planner, history_searcher | |
def format_response(gr_history, agent_return): | |
if agent_return['state'] in [ | |
AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING | |
]: | |
gr_history[-1][1] = agent_return['response'] | |
elif agent_return['state'] == AgentStatusCode.PLUGIN_START: | |
thought = gr_history[-1][1].split('```')[0] | |
if agent_return['response'].startswith('```'): | |
gr_history[-1][1] = thought + '\n' + agent_return['response'] | |
elif agent_return['state'] == AgentStatusCode.PLUGIN_END: | |
thought = gr_history[-1][1].split('```')[0] | |
if isinstance(agent_return['response'], dict): | |
gr_history[-1][ | |
1] = thought + '\n' + f'```json\n{json.dumps(agent_return["response"], ensure_ascii=False, indent=4)}\n```' # noqa: E501 | |
elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN: | |
assert agent_return['inner_steps'][-1]['role'] == 'environment' | |
item = agent_return['inner_steps'][-1] | |
gr_history.append([ | |
None, | |
f"```json\n{json.dumps(item['content'], ensure_ascii=False, indent=4)}\n```" | |
]) | |
gr_history.append([None, '']) | |
return | |
def predict(history_planner, history_searcher): | |
def streaming(raw_response): | |
for chunk in raw_response.iter_lines(chunk_size=8192, | |
decode_unicode=False, | |
delimiter=b'\n'): | |
if chunk: | |
decoded = chunk.decode('utf-8') | |
if decoded == '\r': | |
continue | |
if decoded[:6] == 'data: ': | |
decoded = decoded[6:] | |
elif decoded.startswith(': ping - '): | |
continue | |
response = json.loads(decoded) | |
yield (response['response'], response['current_node']) | |
global PLANNER_HISTORY | |
PLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0])) | |
new_search_turn = True | |
url = 'http://localhost:8002/solve' | |
headers = {'Content-Type': 'application/json'} | |
data = {'inputs': PLANNER_HISTORY} | |
raw_response = requests.post(url, | |
headers=headers, | |
data=json.dumps(data), | |
timeout=20, | |
stream=True) | |
for resp in streaming(raw_response): | |
agent_return, node_name = resp | |
if node_name: | |
if node_name in ['root', 'response']: | |
continue | |
agent_return = agent_return['nodes'][node_name]['detail'] | |
if new_search_turn: | |
history_searcher.append([agent_return['content'], '']) | |
new_search_turn = False | |
format_response(history_searcher, agent_return) | |
if agent_return['state'] == AgentStatusCode.END: | |
new_search_turn = True | |
yield history_planner, history_searcher | |
else: | |
new_search_turn = True | |
format_response(history_planner, agent_return) | |
if agent_return['state'] == AgentStatusCode.END: | |
PLANNER_HISTORY = agent_return['inner_steps'] | |
yield history_planner, history_searcher | |
return history_planner, history_searcher | |
examples = [ | |
["Find legal precedents in contract law."], | |
["What are the top 10 e-commerce websites?"], | |
["Generate a report on global climate change."], | |
] | |
import os | |
css_path = os.path.join(os.path.dirname(__file__), "css", "test1.css") | |
with gr.Blocks(css=css_path) as demo: | |
with gr.Column(elem_classes="chat-box"): | |
gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""") | |
gr.HTML("""<p style="text-align: center; font-family: Arial, sans-serif;"> | |
MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance. You can deploy your own Perplexity.ai-style search engine using either closed-source LLMs (GPT, Claude) | |
or open-source LLMs (InternLM2.5-7b-chat).</p> """) | |
gr.HTML(""" | |
<div style="text-align: center; font-size: 16px;"> | |
<a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px; text-decoration: none; color: #4A90E2;" target="_blank">π GitHub</a> | |
<a href="https://arxiv.org/abs/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;" target="_blank">π Arxiv</a> | |
<a href="https://huggingface.co/papers/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;" target="_blank">π Hugging Face Papers</a> | |
<a href="https://huggingface.co/spaces/internlm/MindSearch" style="text-decoration: none; color: #4A90E2;" target="_blank">π€ Hugging Face Demo</a> | |
</div>""") | |
gr.HTML(""" | |
<h1 align='right'><img src='https://raw.githubusercontent.com/InternLM/MindSearch/98fd84d566fe9e3adc5028727f72f2944098fd05/assets/logo.svg' alt='MindSearch Logo1' class="logo"></h1> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=10): | |
with gr.Row(): | |
with gr.Column(): | |
planner = gr.Chatbot(label='planner', | |
show_label=True, | |
show_copy_button=True, | |
bubble_full_width=False, | |
render_markdown=True, | |
elem_classes="chatbot-container") | |
with gr.Column(): | |
searcher = gr.Chatbot(label='searcher', | |
show_label=True, | |
show_copy_button=True, | |
bubble_full_width=False, | |
render_markdown=True, | |
elem_classes="chatbot-container") | |
with gr.Row(elem_classes="chat-box"): | |
# Text input area | |
user_input = gr.Textbox( | |
show_label=False, | |
placeholder="Type your message...", | |
lines=1, | |
container=False, | |
elem_classes="editor" | |
) | |
# Buttons (now in the same Row) | |
submitBtn = gr.Button("submit", variant="primary", elem_classes="toolbarButton") | |
clearBtn = gr.Button("clear", variant="secondary", elem_classes="toolbarButton") | |
with gr.Row(elem_classes="examples-container"): | |
examples_component = gr.Examples(examples, inputs=user_input, | |
label="Try these examples:") | |
def user(query, history): | |
return '', history + [[query, '']] | |
def submit_example(example): | |
return user(example[0], planner.value) | |
submitBtn.click(user, [user_input, planner], [user_input, planner], | |
queue=False).then(predict, [planner, searcher], | |
[planner, searcher]) | |
clearBtn.click(rst_mem, [planner, searcher], [planner, searcher], | |
queue=False) | |
demo.queue() | |
demo.launch(server_name='0.0.0.0', | |
server_port=7860, | |
inbrowser=True, | |
share=True) |