Spaces:
Running
Running
ZhangYuhan
commited on
Commit
โข
d75a844
1
Parent(s):
ccbca0a
update leaderboard
Browse files- app.py +12 -12
- arena_elo/elo_rating/clean_battle_data.py +92 -95
- arena_elo/elo_rating/elo_analysis.py +37 -19
- arena_elo/elo_rating/generate_leaderboard.py +52 -32
- arena_elo/results/latest/elo_results_image2shape.pkl +3 -0
- arena_elo/results/latest/elo_results_text2shape.pkl +3 -0
- arena_elo/results/latest/image2shape_leaderboard.csv +14 -0
- arena_elo/results/latest/text2shape_leaderboard.csv +11 -0
- model/model_registry.py +1 -1
- serve/leaderboard.py +132 -77
- serve/utils.py +1 -0
app.py
CHANGED
@@ -26,7 +26,7 @@ def build_combine_demo(models, elo_results_file, leaderboard_table_file):
|
|
26 |
build_t2s_ui_single_model(models)
|
27 |
if elo_results_file:
|
28 |
with gr.Tab("Text-to-3D Leaderboard", id=3):
|
29 |
-
build_leaderboard_tab(elo_results_file['
|
30 |
else:
|
31 |
with gr.Tab("Text-to-3D Leaderboard", id=3):
|
32 |
build_empty_leaderboard_tab()
|
@@ -43,7 +43,7 @@ def build_combine_demo(models, elo_results_file, leaderboard_table_file):
|
|
43 |
build_i2s_ui_single_model(models)
|
44 |
if elo_results_file:
|
45 |
with gr.Tab("Image-to-3D Leaderboard", id=8):
|
46 |
-
build_leaderboard_tab(elo_results_file['
|
47 |
else:
|
48 |
with gr.Tab("Image-to-3D Leaderboard", id=8):
|
49 |
build_empty_leaderboard_tab()
|
@@ -62,17 +62,17 @@ def load_elo_results(elo_results_dir):
|
|
62 |
elo_results_file = {}
|
63 |
leaderboard_table_file = {}
|
64 |
for file in elo_results_dir.glob('elo_results_*.pkl'):
|
65 |
-
if '
|
66 |
-
elo_results_file['
|
67 |
-
elif '
|
68 |
-
elo_results_file['
|
69 |
else:
|
70 |
raise ValueError(f"Unknown file name: {file.name}")
|
71 |
for file in elo_results_dir.glob('*_leaderboard.csv'):
|
72 |
-
if '
|
73 |
-
leaderboard_table_file['
|
74 |
-
elif '
|
75 |
-
leaderboard_table_file['
|
76 |
else:
|
77 |
raise ValueError(f"Unknown file name: {file.name}")
|
78 |
|
@@ -84,7 +84,7 @@ if __name__ == "__main__":
|
|
84 |
elo_results_dir = ELO_RESULTS_DIR
|
85 |
models = ModelManager()
|
86 |
|
87 |
-
|
88 |
-
elo_results_file, leaderboard_table_file = None, None
|
89 |
demo = build_combine_demo(models, elo_results_file, leaderboard_table_file)
|
90 |
demo.queue(max_size=20).launch(server_port=server_port, root_path=ROOT_PATH, debug=True)
|
|
|
26 |
build_t2s_ui_single_model(models)
|
27 |
if elo_results_file:
|
28 |
with gr.Tab("Text-to-3D Leaderboard", id=3):
|
29 |
+
build_leaderboard_tab(elo_results_file['text2shape'], leaderboard_table_file['text2shape'])
|
30 |
else:
|
31 |
with gr.Tab("Text-to-3D Leaderboard", id=3):
|
32 |
build_empty_leaderboard_tab()
|
|
|
43 |
build_i2s_ui_single_model(models)
|
44 |
if elo_results_file:
|
45 |
with gr.Tab("Image-to-3D Leaderboard", id=8):
|
46 |
+
build_leaderboard_tab(elo_results_file['image2shape'], leaderboard_table_file['image2shape'])
|
47 |
else:
|
48 |
with gr.Tab("Image-to-3D Leaderboard", id=8):
|
49 |
build_empty_leaderboard_tab()
|
|
|
62 |
elo_results_file = {}
|
63 |
leaderboard_table_file = {}
|
64 |
for file in elo_results_dir.glob('elo_results_*.pkl'):
|
65 |
+
if 'text2shape' in file.name:
|
66 |
+
elo_results_file['text2shape'] = file
|
67 |
+
elif 'image2shape' in file.name:
|
68 |
+
elo_results_file['image2shape'] = file
|
69 |
else:
|
70 |
raise ValueError(f"Unknown file name: {file.name}")
|
71 |
for file in elo_results_dir.glob('*_leaderboard.csv'):
|
72 |
+
if 'text2shape' in file.name:
|
73 |
+
leaderboard_table_file['text2shape'] = file
|
74 |
+
elif 'image2shape' in file.name:
|
75 |
+
leaderboard_table_file['image2shape'] = file
|
76 |
else:
|
77 |
raise ValueError(f"Unknown file name: {file.name}")
|
78 |
|
|
|
84 |
elo_results_dir = ELO_RESULTS_DIR
|
85 |
models = ModelManager()
|
86 |
|
87 |
+
elo_results_file, leaderboard_table_file = load_elo_results(elo_results_dir)
|
88 |
+
# elo_results_file, leaderboard_table_file = None, None
|
89 |
demo = build_combine_demo(models, elo_results_file, leaderboard_table_file)
|
90 |
demo.queue(max_size=20).launch(server_port=server_port, root_path=ROOT_PATH, debug=True)
|
arena_elo/elo_rating/clean_battle_data.py
CHANGED
@@ -21,42 +21,6 @@ from .basic_stats import get_log_files, NUM_SERVERS, LOG_ROOT_DIR
|
|
21 |
from .utils import detect_language, get_time_stamp_from_date
|
22 |
|
23 |
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
|
24 |
-
IDENTITY_WORDS = [
|
25 |
-
"vicuna",
|
26 |
-
"lmsys",
|
27 |
-
"koala",
|
28 |
-
"uc berkeley",
|
29 |
-
"open assistant",
|
30 |
-
"laion",
|
31 |
-
"chatglm",
|
32 |
-
"chatgpt",
|
33 |
-
"gpt-4",
|
34 |
-
"openai",
|
35 |
-
"anthropic",
|
36 |
-
"claude",
|
37 |
-
"bard",
|
38 |
-
"palm",
|
39 |
-
"lamda",
|
40 |
-
"google",
|
41 |
-
"llama",
|
42 |
-
"qianwan",
|
43 |
-
"alibaba",
|
44 |
-
"mistral",
|
45 |
-
"zhipu",
|
46 |
-
"KEG lab",
|
47 |
-
"01.AI",
|
48 |
-
"AI2",
|
49 |
-
"Tรผlu",
|
50 |
-
"Tulu",
|
51 |
-
"NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.",
|
52 |
-
"$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.",
|
53 |
-
"API REQUEST ERROR. Please increase the number of max tokens.",
|
54 |
-
"**API REQUEST ERROR** Reason: The response was blocked.",
|
55 |
-
"**API REQUEST ERROR**",
|
56 |
-
]
|
57 |
-
|
58 |
-
for i in range(len(IDENTITY_WORDS)):
|
59 |
-
IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower()
|
60 |
|
61 |
|
62 |
def remove_html(raw):
|
@@ -77,22 +41,28 @@ def to_openai_format(messages):
|
|
77 |
|
78 |
def replace_model_name(old_name, tstamp):
|
79 |
replace_dict = {
|
80 |
-
"
|
81 |
-
"
|
82 |
-
"
|
83 |
-
"
|
84 |
-
"
|
85 |
-
"
|
|
|
|
|
86 |
}
|
87 |
-
if old_name in
|
88 |
-
if tstamp > 1687849200:
|
89 |
-
return old_name + "-0613"
|
90 |
-
else:
|
91 |
-
return old_name + "-0314"
|
92 |
-
if old_name in replace_dict:
|
93 |
return replace_dict[old_name]
|
94 |
return old_name
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def read_file(filename):
|
98 |
data = []
|
@@ -126,7 +96,7 @@ def load_image(image_path):
|
|
126 |
return None
|
127 |
|
128 |
def clean_battle_data(
|
129 |
-
log_files, exclude_model_names, ban_ip_list=None, sanitize_ip=False, mode="simple", task_name="
|
130 |
):
|
131 |
data = read_file_parallel(log_files, num_threads=16)
|
132 |
|
@@ -139,6 +109,7 @@ def clean_battle_data(
|
|
139 |
|
140 |
all_models = set()
|
141 |
all_ips = dict()
|
|
|
142 |
ct_anony = 0
|
143 |
ct_invalid = 0
|
144 |
ct_leaked_identity = 0
|
@@ -165,17 +136,18 @@ def clean_battle_data(
|
|
165 |
):
|
166 |
ct_invalid += 1
|
167 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
if
|
170 |
-
|
171 |
-
|
172 |
-
ct_anony += 1
|
173 |
else:
|
174 |
-
anony =
|
175 |
-
models = models_public
|
176 |
-
if not models_public == models_hidden:
|
177 |
-
ct_invalid += 1
|
178 |
-
continue
|
179 |
|
180 |
# # Detect langauge
|
181 |
# state = row["states"][0]
|
@@ -204,26 +176,37 @@ def clean_battle_data(
|
|
204 |
# continue
|
205 |
|
206 |
# Replace bard with palm
|
207 |
-
if task_name == "image_editing":
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
ct_invalid += 1
|
211 |
continue
|
212 |
-
|
213 |
-
|
214 |
-
if not all("playground" in x.lower() or (x.startswith("imagenhub_") and x.endswith("_generation")) for x in models):
|
215 |
-
# print(f"Invalid model names: {models}")
|
216 |
ct_invalid += 1
|
217 |
continue
|
218 |
-
# models = [x[len("imagenhub_"):-len("_generation")] for x in models]
|
219 |
-
for i, model_name in enumerate(models):
|
220 |
-
if model_name.startswith("imagenhub_"):
|
221 |
-
models[i] = model_name[len("imagenhub_"):-len("_generation")]
|
222 |
-
|
223 |
else:
|
224 |
raise ValueError(f"Invalid task_name: {task_name}")
|
225 |
-
models = [replace_model_name(m, row["tstamp"]) for m in models]
|
226 |
|
|
|
|
|
|
|
|
|
|
|
227 |
# Exclude certain models
|
228 |
if exclude_model_names and any(x in exclude_model_names for x in models):
|
229 |
ct_invalid += 1
|
@@ -237,30 +220,36 @@ def clean_battle_data(
|
|
237 |
# print(f"Invalid vote before the valid starting date for {models[0]} and {models[1]}")
|
238 |
# ct_invalid += 1
|
239 |
# continue
|
240 |
-
|
241 |
-
|
242 |
|
243 |
if mode == "conv_release":
|
244 |
-
|
245 |
-
date = datetime.datetime.fromtimestamp(row["tstamp"], tz=timezone("US/Pacific")).strftime("%Y-%m-%d") # 2024-02-29
|
246 |
-
image_path_format = f"{LOG_ROOT_DIR}/{date}-convinput_images/input_image_"
|
247 |
-
image_path_0 = image_path_format + str(row["states"][0]["conv_id"]) + ".png"
|
248 |
-
image_path_1 = image_path_format + str(row["states"][1]["conv_id"]) + ".png"
|
249 |
-
if not os.path.exists(image_path_0) or not os.path.exists(image_path_1):
|
250 |
-
print(f"Image not found for {image_path_0} or {image_path_1}")
|
251 |
-
ct_invalid += 1
|
252 |
-
continue
|
253 |
-
|
254 |
-
image_0 = load_image(image_path_0)
|
255 |
-
image_1 = load_image(image_path_1)
|
256 |
-
if image_0 is None or image_1 is None:
|
257 |
-
print(f"Image not found for {image_path_0} or {image_path_1}")
|
258 |
-
ct_invalid += 1
|
259 |
-
continue
|
260 |
-
if image_0.tobytes() != image_1.tobytes():
|
261 |
-
print(f"Image not the same for {image_path_0} and {image_path_1}")
|
262 |
ct_invalid += 1
|
263 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
|
266 |
question_id = row["states"][0]["conv_id"]
|
@@ -284,24 +273,30 @@ def clean_battle_data(
|
|
284 |
ct_banned += 1
|
285 |
continue
|
286 |
|
|
|
|
|
|
|
|
|
|
|
287 |
# Save the results
|
288 |
battles.append(
|
289 |
dict(
|
290 |
question_id=question_id,
|
|
|
291 |
model_a=models[0],
|
292 |
model_b=models[1],
|
293 |
winner=convert_type[row["type"]],
|
294 |
judge=f"arena_user_{user_id}",
|
295 |
# conversation_a=conversation_a,
|
296 |
# conversation_b=conversation_b,
|
297 |
-
|
298 |
anony=anony,
|
299 |
# language=lang_code,
|
300 |
tstamp=row["tstamp"],
|
301 |
)
|
302 |
)
|
303 |
|
304 |
-
all_models.update(
|
305 |
battles.sort(key=lambda x: x["tstamp"])
|
306 |
last_updated_tstamp = battles[-1]["tstamp"]
|
307 |
|
@@ -316,6 +311,8 @@ def clean_battle_data(
|
|
316 |
)
|
317 |
print(f"#battles: {len(battles)}, #anony: {ct_anony}")
|
318 |
print(f"#models: {len(all_models)}, {all_models}")
|
|
|
|
|
319 |
print(f"last-updated: {last_updated_datetime}")
|
320 |
|
321 |
if ban_ip_list is not None:
|
@@ -331,9 +328,9 @@ if __name__ == "__main__":
|
|
331 |
parser = argparse.ArgumentParser()
|
332 |
parser.add_argument("--max-num-files", type=int)
|
333 |
parser.add_argument(
|
334 |
-
"--mode", type=str, choices=["simple", "conv_release"], default="
|
335 |
)
|
336 |
-
parser.add_argument("--task_name", type=str, choices=["
|
337 |
parser.add_argument("--exclude-model-names", type=str, nargs="+")
|
338 |
parser.add_argument("--ban-ip-file", type=str)
|
339 |
parser.add_argument("--sanitize-ip", action="store_true", default=False)
|
|
|
21 |
from .utils import detect_language, get_time_stamp_from_date
|
22 |
|
23 |
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
def remove_html(raw):
|
|
|
41 |
|
42 |
def replace_model_name(old_name, tstamp):
|
43 |
replace_dict = {
|
44 |
+
"point-e-t": "point-e",
|
45 |
+
"shap-e-t": "shap-e",
|
46 |
+
"point-e-i": "point-e",
|
47 |
+
"shap-e-i": "shap-e",
|
48 |
+
"point-e_t": "point-e",
|
49 |
+
"shap-e_t": "shap-e",
|
50 |
+
"point-e_i": "point-e",
|
51 |
+
"shap-e_i": "shap-e",
|
52 |
}
|
53 |
+
if old_name in replace_dict.keys():
|
|
|
|
|
|
|
|
|
|
|
54 |
return replace_dict[old_name]
|
55 |
return old_name
|
56 |
|
57 |
+
def replace_dim(dim_name):
|
58 |
+
replace_dict = {
|
59 |
+
"Geometry Quality": "Geometry Details",
|
60 |
+
}
|
61 |
+
if dim_name.endswith(": "):
|
62 |
+
dim_name = dim_name[:-2]
|
63 |
+
if dim_name in replace_dict.keys():
|
64 |
+
return replace_dict[dim_name]
|
65 |
+
return dim_name
|
66 |
|
67 |
def read_file(filename):
|
68 |
data = []
|
|
|
96 |
return None
|
97 |
|
98 |
def clean_battle_data(
|
99 |
+
log_files, exclude_model_names, ban_ip_list=None, sanitize_ip=False, mode="simple", task_name="text2shape"
|
100 |
):
|
101 |
data = read_file_parallel(log_files, num_threads=16)
|
102 |
|
|
|
109 |
|
110 |
all_models = set()
|
111 |
all_ips = dict()
|
112 |
+
dim_counts = dict()
|
113 |
ct_anony = 0
|
114 |
ct_invalid = 0
|
115 |
ct_leaked_identity = 0
|
|
|
136 |
):
|
137 |
ct_invalid += 1
|
138 |
continue
|
139 |
+
|
140 |
+
if not models_public == models_hidden:
|
141 |
+
ct_invalid += 1
|
142 |
+
continue
|
143 |
+
else:
|
144 |
+
models = models_hidden
|
145 |
|
146 |
+
if 'anony' not in row.keys():
|
147 |
+
ct_invalid += 1
|
148 |
+
continue
|
|
|
149 |
else:
|
150 |
+
anony = row['anony']
|
|
|
|
|
|
|
|
|
151 |
|
152 |
# # Detect langauge
|
153 |
# state = row["states"][0]
|
|
|
176 |
# continue
|
177 |
|
178 |
# Replace bard with palm
|
179 |
+
# if task_name == "image_editing":
|
180 |
+
# if not all(x.startswith("imagenhub_") and x.endswith("_edition") for x in models):
|
181 |
+
# # print(f"Invalid model names: {models}")
|
182 |
+
# ct_invalid += 1
|
183 |
+
# continue
|
184 |
+
# models = [x[len("imagenhub_"):-len("_edition")] for x in models]
|
185 |
+
# elif task_name == "t2i_generation":
|
186 |
+
# if not all("playground" in x.lower() or (x.startswith("imagenhub_") and x.endswith("_generation")) for x in models):
|
187 |
+
# # print(f"Invalid model names: {models}")
|
188 |
+
# ct_invalid += 1
|
189 |
+
# continue
|
190 |
+
# # models = [x[len("imagenhub_"):-len("_generation")] for x in models]
|
191 |
+
# for i, model_name in enumerate(models):
|
192 |
+
# if model_name.startswith("imagenhub_"):
|
193 |
+
# models[i] = model_name[len("imagenhub_"):-len("_generation")]
|
194 |
+
if task_name == 'text2shape':
|
195 |
+
if row['states'][0]['i2s_mode'] or row['states'][1]['i2s_mode']:
|
196 |
ct_invalid += 1
|
197 |
continue
|
198 |
+
elif task_name == 'image2shape':
|
199 |
+
if not row['states'][0]['i2s_mode'] or not row['states'][1]['i2s_mode']:
|
|
|
|
|
200 |
ct_invalid += 1
|
201 |
continue
|
|
|
|
|
|
|
|
|
|
|
202 |
else:
|
203 |
raise ValueError(f"Invalid task_name: {task_name}")
|
|
|
204 |
|
205 |
+
models = [replace_model_name(m, row["tstamp"]) for m in models]
|
206 |
+
|
207 |
+
if anony:
|
208 |
+
ct_anony += 1
|
209 |
+
|
210 |
# Exclude certain models
|
211 |
if exclude_model_names and any(x in exclude_model_names for x in models):
|
212 |
ct_invalid += 1
|
|
|
220 |
# print(f"Invalid vote before the valid starting date for {models[0]} and {models[1]}")
|
221 |
# ct_invalid += 1
|
222 |
# continue
|
|
|
|
|
223 |
|
224 |
if mode == "conv_release":
|
225 |
+
if row['states'][0]['offline'] != row['states'][1]['offline']:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
ct_invalid += 1
|
227 |
continue
|
228 |
+
elif row['states'][0]['offline']:
|
229 |
+
if row['states'][0]['offline_idx'] != row['states'][1]['offline_idx']:
|
230 |
+
ct_invalid += 1
|
231 |
+
continue
|
232 |
+
else:
|
233 |
+
# assert the two images are the same
|
234 |
+
date = datetime.datetime.fromtimestamp(row["tstamp"], tz=timezone("US/Pacific")).strftime("%Y-%m-%d") # 2024-02-29
|
235 |
+
image_path_format = f"{LOG_ROOT_DIR}/{date}-convinput_images/input_image_"
|
236 |
+
image_path_0 = image_path_format + str(row["states"][0]["conv_id"]) + ".png"
|
237 |
+
image_path_1 = image_path_format + str(row["states"][1]["conv_id"]) + ".png"
|
238 |
+
if not os.path.exists(image_path_0) or not os.path.exists(image_path_1):
|
239 |
+
print(f"Image not found for {image_path_0} or {image_path_1}")
|
240 |
+
ct_invalid += 1
|
241 |
+
continue
|
242 |
+
|
243 |
+
image_0 = load_image(image_path_0)
|
244 |
+
image_1 = load_image(image_path_1)
|
245 |
+
if image_0 is None or image_1 is None:
|
246 |
+
print(f"Image not found for {image_path_0} or {image_path_1}")
|
247 |
+
ct_invalid += 1
|
248 |
+
continue
|
249 |
+
if image_0.tobytes() != image_1.tobytes():
|
250 |
+
print(f"Image not the same for {image_path_0} and {image_path_1}")
|
251 |
+
ct_invalid += 1
|
252 |
+
continue
|
253 |
|
254 |
|
255 |
question_id = row["states"][0]["conv_id"]
|
|
|
273 |
ct_banned += 1
|
274 |
continue
|
275 |
|
276 |
+
dim = replace_dim(row['dim'])
|
277 |
+
if dim not in dim_counts.keys():
|
278 |
+
dim_counts[dim] = 0
|
279 |
+
dim_counts[dim] += 1
|
280 |
+
|
281 |
# Save the results
|
282 |
battles.append(
|
283 |
dict(
|
284 |
question_id=question_id,
|
285 |
+
dim=dim,
|
286 |
model_a=models[0],
|
287 |
model_b=models[1],
|
288 |
winner=convert_type[row["type"]],
|
289 |
judge=f"arena_user_{user_id}",
|
290 |
# conversation_a=conversation_a,
|
291 |
# conversation_b=conversation_b,
|
292 |
+
idx=row['states'][0]['offline_idx'],
|
293 |
anony=anony,
|
294 |
# language=lang_code,
|
295 |
tstamp=row["tstamp"],
|
296 |
)
|
297 |
)
|
298 |
|
299 |
+
all_models.update(models)
|
300 |
battles.sort(key=lambda x: x["tstamp"])
|
301 |
last_updated_tstamp = battles[-1]["tstamp"]
|
302 |
|
|
|
311 |
)
|
312 |
print(f"#battles: {len(battles)}, #anony: {ct_anony}")
|
313 |
print(f"#models: {len(all_models)}, {all_models}")
|
314 |
+
for dim, count in dim_counts.items():
|
315 |
+
print(dim, ": ", count)
|
316 |
print(f"last-updated: {last_updated_datetime}")
|
317 |
|
318 |
if ban_ip_list is not None:
|
|
|
328 |
parser = argparse.ArgumentParser()
|
329 |
parser.add_argument("--max-num-files", type=int)
|
330 |
parser.add_argument(
|
331 |
+
"--mode", type=str, choices=["simple", "conv_release"], default="conv_release"
|
332 |
)
|
333 |
+
parser.add_argument("--task_name", type=str, choices=["text2shape", "image2shape"])
|
334 |
parser.add_argument("--exclude-model-names", type=str, nargs="+")
|
335 |
parser.add_argument("--ban-ip-file", type=str)
|
336 |
parser.add_argument("--sanitize-ip", action="store_true", default=False)
|
arena_elo/elo_rating/elo_analysis.py
CHANGED
@@ -350,29 +350,47 @@ if __name__ == "__main__":
|
|
350 |
log_files = get_log_files(args.max_num_files)
|
351 |
battles = clean_battle_data(log_files)
|
352 |
|
353 |
-
|
354 |
-
|
355 |
-
)
|
356 |
-
|
357 |
-
|
358 |
-
)
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
-
|
|
|
368 |
cutoff_date = datetime.datetime.fromtimestamp(
|
369 |
last_updated_tstamp, tz=timezone("US/Pacific")
|
370 |
).strftime("%Y%m%d")
|
371 |
|
372 |
-
|
373 |
-
results = {
|
374 |
-
"anony": anony_results,
|
375 |
-
"full": full_results,
|
376 |
-
}
|
377 |
with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout:
|
378 |
pickle.dump(results, fout)
|
|
|
350 |
log_files = get_log_files(args.max_num_files)
|
351 |
battles = clean_battle_data(log_files)
|
352 |
|
353 |
+
## split battles by evaluated dimensions
|
354 |
+
battles = pd.DataFrame(battles)
|
355 |
+
dims = list(battles['dim'].unique())
|
356 |
+
# dim_battles = {}
|
357 |
+
# for battle in battles:
|
358 |
+
# print(battle)
|
359 |
+
# if battle["dim"] not in dim_battles.keys():
|
360 |
+
# dim_battles[battle.dim] = []
|
361 |
+
# dim_battles[battle.dim].append(battle)
|
362 |
+
|
363 |
+
results = {}
|
364 |
+
last_updated_tstamp = None
|
365 |
+
for dim in dims:
|
366 |
+
print(dim)
|
367 |
+
dim_battles = battles[battles['dim']==dim].reset_index(drop=True)
|
368 |
+
print(dim_battles.shape)
|
369 |
+
anony_results = report_elo_analysis_results(
|
370 |
+
dim_battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=True
|
371 |
+
)
|
372 |
+
full_results = report_elo_analysis_results(
|
373 |
+
dim_battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=False
|
374 |
+
)
|
375 |
+
|
376 |
+
print(f"## {dim}")
|
377 |
+
print("# Online Elo")
|
378 |
+
pretty_print_elo_rating(anony_results["elo_rating_online"])
|
379 |
+
print("# Median")
|
380 |
+
pretty_print_elo_rating(anony_results["elo_rating_final"])
|
381 |
+
print(f"last update : {anony_results['last_updated_datetime']}")
|
382 |
+
|
383 |
+
results[dim] = {
|
384 |
+
"anony": anony_results,
|
385 |
+
"full": full_results,
|
386 |
+
}
|
387 |
|
388 |
+
if last_updated_tstamp is None or last_updated_tstamp < full_results["last_updated_tstamp"]:
|
389 |
+
last_updated_tstamp = full_results["last_updated_tstamp"]
|
390 |
cutoff_date = datetime.datetime.fromtimestamp(
|
391 |
last_updated_tstamp, tz=timezone("US/Pacific")
|
392 |
).strftime("%Y%m%d")
|
393 |
|
394 |
+
print(cutoff_date)
|
|
|
|
|
|
|
|
|
395 |
with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout:
|
396 |
pickle.dump(results, fout)
|
arena_elo/elo_rating/generate_leaderboard.py
CHANGED
@@ -14,43 +14,63 @@ def main(
|
|
14 |
with open(elo_rating_pkl, "rb") as fin:
|
15 |
elo_rating_results = pickle.load(fin)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
model_info[model]["key"] = model
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
final_model_info = {}
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
model_info = final_model_info
|
55 |
|
56 |
exclude_keys = ['starting_from']
|
@@ -61,7 +81,7 @@ def main(
|
|
61 |
df = pd.DataFrame(model_info).T
|
62 |
df = df[fields]
|
63 |
# sort by anony rating
|
64 |
-
df = df.sort_values(by=["Arena Elo rating
|
65 |
df.to_csv(output_csv, index=False)
|
66 |
print("Leaderboard data saved to", output_csv)
|
67 |
print(df)
|
|
|
14 |
with open(elo_rating_pkl, "rb") as fin:
|
15 |
elo_rating_results = pickle.load(fin)
|
16 |
|
17 |
+
# Model, Dim Elo rating (anony), Arena Elo rating (anony), Link, Orgnization
|
18 |
+
model_ratings = model_info
|
19 |
+
fields = ["key", "Model"]
|
20 |
+
for dim, dim_results in elo_rating_results.items():
|
21 |
+
anony_elo_rating_results = dim_results["anony"]
|
22 |
+
full_elo_rating_results = dim_results["full"]
|
23 |
+
anony_leaderboard_data = anony_elo_rating_results["leaderboard_table_df"]
|
24 |
+
full_leaderboard_data = full_elo_rating_results["leaderboard_table_df"]
|
25 |
|
26 |
+
fields += [f"{dim} Elo rating"]
|
27 |
+
all_models = anony_leaderboard_data.index.tolist()
|
28 |
+
for model in all_models:
|
29 |
+
if not model in model_ratings:
|
30 |
+
# set Organization and license to empty
|
31 |
+
model_ratings[model] = {}
|
32 |
+
model_ratings[model]["Organization"] = "N/A"
|
33 |
+
model_ratings[model]["Link"] = "N/A"
|
34 |
+
model_ratings[model]["Model"] = model
|
35 |
+
model_ratings[model]["key"] = model
|
36 |
|
37 |
+
if model in anony_leaderboard_data.index:
|
38 |
+
model_ratings[model][f"{dim} Elo rating"] = anony_leaderboard_data.loc[model, "rating"]
|
39 |
+
else:
|
40 |
+
model_ratings[model][f"{dim} Elo rating"] = 0
|
41 |
+
if "Arena Elo rating" not in model_ratings[model].keys():
|
42 |
+
model_ratings[model]["Arena Elo rating"] = 0
|
43 |
+
model_ratings[model]["Arena Elo rating"] += model_ratings[model][f"{dim} Elo rating"]
|
|
|
44 |
|
45 |
+
## Anony
|
46 |
+
# if model in anony_leaderboard_data.index:
|
47 |
+
# model_ratings[model][f"{dim} Elo rating (anony)"] = anony_leaderboard_data.loc[model, "rating"]
|
48 |
+
# else:
|
49 |
+
# model_ratings[model][f"{dim} Elo rating (anony)"] = 0
|
50 |
+
# if "Arena Elo rating (anony)" not in model_ratings[model].keys():
|
51 |
+
# model_ratings[model]["Arena Elo rating (anony)"] = 0
|
52 |
+
# model_ratings[model]["Arena Elo rating (anony)"] += model_ratings[model][f"{dim} Elo rating (anony)"]
|
53 |
|
54 |
+
## Anony + Named
|
55 |
+
# if model in full_elo_rating_results["leaderboard_table_df"].index:
|
56 |
+
# model_ratings[model][f"{dim} Elo rating (full)"] = full_leaderboard_data.loc[model, "rating"]
|
57 |
+
# else:
|
58 |
+
# model_ratings[model][f"{dim} Elo rating (full)"] = 0
|
59 |
+
# if "Arena Elo rating (full)" not in model_ratings[model].keys():
|
60 |
+
# model_ratings[model]["Arena Elo rating (full)"] = 0
|
61 |
+
# model_ratings[model]["Arena Elo rating (full)"] += model_ratings[model][f"{dim} Elo rating (full)"]
|
62 |
+
|
63 |
+
fields += ["Arena Elo rating", "Link", "Organization"]
|
64 |
+
# fields += ["Arena Elo rating (anony)", "Arena Elo rating (full)", "Link", "Organization"]
|
65 |
|
66 |
final_model_info = {}
|
67 |
+
print(model_ratings)
|
68 |
+
for model in model_ratings:
|
69 |
+
if "Model" in model_ratings[model]:
|
70 |
+
# model_ratings[model]["Arena Elo rating (anony)"] /= 5
|
71 |
+
# model_ratings[model]["Arena Elo rating (full)"] /= 5
|
72 |
+
model_ratings[model]["Arena Elo rating"] /= 5
|
73 |
+
final_model_info[model] = model_ratings[model]
|
74 |
model_info = final_model_info
|
75 |
|
76 |
exclude_keys = ['starting_from']
|
|
|
81 |
df = pd.DataFrame(model_info).T
|
82 |
df = df[fields]
|
83 |
# sort by anony rating
|
84 |
+
df = df.sort_values(by=["Arena Elo rating"], ascending=False)
|
85 |
df.to_csv(output_csv, index=False)
|
86 |
print("Leaderboard data saved to", output_csv)
|
87 |
print(df)
|
arena_elo/results/latest/elo_results_image2shape.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:763a67ed5648fc18f5143494c5df040e15d36239afcad12b560bd3bd7f3b15f2
|
3 |
+
size 356525
|
arena_elo/results/latest/elo_results_text2shape.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b0d5c169127ff56f994f911cdc9a291418082f998f8cc227bb8bc93fcac60e6
|
3 |
+
size 303063
|
arena_elo/results/latest/image2shape_leaderboard.csv
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
key,Model,Geometry Plausibility Elo rating,Geometry Details Elo rating,Texture Quality Elo rating,Geometry-Texture Coherency Elo rating,Visual Alignment Elo rating,Arena Elo rating,Link,Organization
|
2 |
+
wonder3d,wonder3d,1243.284839499005,1248.2975105106993,1167.837985855818,1320.3888541585839,1350.506240958834,1266.063086196588,N/A,N/A
|
3 |
+
zero123-xl,zero123-xl,1194.649412893989,1101.0347850835524,1312.087224585339,1207.9352273497925,1144.1779276854743,1191.9769155196295,N/A,N/A
|
4 |
+
openlrm,openlrm,1091.8760192981938,1222.0774978360885,1357.186686625133,1172.2322808524807,1113.8647248753261,1191.4474418974444,N/A,N/A
|
5 |
+
magic123,magic123,1178.7199391336158,1029.8103015949425,1134.7674602557545,1301.8417174024141,1248.4622906482673,1178.720341806999,N/A,N/A
|
6 |
+
grm-i,grm-i,1083.459465213645,1043.62495738426,1182.665735601177,1148.2931891751466,1434.9259362777323,1178.5938567303922,N/A,N/A
|
7 |
+
stable-zero123,stable-zero123,1242.5508388592934,1196.2292237209613,1148.3376690300986,1180.2722658970024,1114.9239043945179,1176.4627803803746,N/A,N/A
|
8 |
+
lgm,lgm,1057.916276030041,1106.0181413778544,1159.3104060792818,1106.1000119897903,1082.1591938968284,1102.3008058747594,N/A,N/A
|
9 |
+
syncdreamer,syncdreamer,994.3065008728838,1090.5371113220137,876.5482674184123,889.0423446249837,849.5440886590599,939.9956625794706,N/A,N/A
|
10 |
+
shap-e,shap-e,863.755371488366,865.6017926257314,891.563972695212,972.4063159954788,739.4720652007818,866.5599036011139,N/A,N/A
|
11 |
+
triplane-gaussian,triplane-gaussian,850.8528602346569,889.7268326768269,800.0847617841707,725.8402704343466,1007.4240505628655,854.7857551385734,N/A,N/A
|
12 |
+
point-e,point-e,816.3259708197892,777.9698792947121,834.9771690582178,859.8364726200334,740.3201250121207,805.8859233609746,N/A,N/A
|
13 |
+
free3d,free3d,694.5518065271474,683.8285617090779,617.6756798090618,531.0802012842535,784.2006999191588,662.26738984974,N/A,N/A
|
14 |
+
escher-net,escher-net,687.7506991293735,745.2434048632799,516.9569812023235,584.7308482156934,390.0187519090333,584.9401370639407,N/A,N/A
|
arena_elo/results/latest/text2shape_leaderboard.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
key,Model,Geometry Plausibility Elo rating,Texture Quality Elo rating,Geometry Details Elo rating,Geometry-Texture Coherency Elo rating,Semantic Alignment Elo rating,Arena Elo rating,Link,Organization
|
2 |
+
mvdream,mvdream,1246.0482236749672,1388.7547518674971,1284.500188530191,1311.3665264514373,1328.133497111749,1311.7606375271685,N/A,N/A
|
3 |
+
lucid-dreamer,lucid-dreamer,1089.4897652983511,1262.0324465310641,1173.4213901828666,1182.4132799557342,1140.2117496688475,1169.5137263273725,N/A,N/A
|
4 |
+
grm-t,grm-t,1065.2957236973393,938.5454826862575,1115.6433344459817,1019.5242102399678,1020.2764909535268,1031.8570484046147,N/A,N/A
|
5 |
+
magic3d,magic3d,1012.6077627602834,1036.984799628633,1028.7772442112278,1063.4857834325169,999.9807438670646,1028.367266779945,N/A,N/A
|
6 |
+
latent-nerf,latent-nerf,937.1268113750971,910.8947491420889,938.4922547668017,874.1294115476043,1021.3685731479346,936.4023599959053,N/A,N/A
|
7 |
+
dreamfusion,dreamfusion,970.7944600712297,922.0644331004878,951.5799643764489,911.605820758788,843.9671829685316,920.0023722550972,N/A,N/A
|
8 |
+
sjc,sjc,870.9792588602744,901.2344860951221,812.8106728066198,982.9416879375193,1004.6125410259175,914.5157293450906,N/A,N/A
|
9 |
+
shap-e,shap-e,988.0167259180473,917.1927616589292,911.4422051186916,881.2592471160182,871.9730114545998,913.9767902532573,N/A,N/A
|
10 |
+
point-e,point-e,819.6412683444105,722.29608928992,783.3327455611708,773.274032560414,769.4762098018289,773.6040691115488,N/A,N/A
|
11 |
+
,,1000.0,,,,,200.0,N/A,N/A
|
model/model_registry.py
CHANGED
@@ -184,7 +184,7 @@ register_model_info(
|
|
184 |
)
|
185 |
|
186 |
register_model_info(
|
187 |
-
["stable-zero123"
|
188 |
"Stable Zero123",
|
189 |
"https://stability.ai/news/stable-zero123-3d-generation",
|
190 |
"Quality 3D Object Generation from Single Images",
|
|
|
184 |
)
|
185 |
|
186 |
register_model_info(
|
187 |
+
["stable-zero123"],
|
188 |
"Stable Zero123",
|
189 |
"https://stability.ai/news/stable-zero123-3d-generation",
|
190 |
"Quality 3D Object Generation from Single Images",
|
serve/leaderboard.py
CHANGED
@@ -21,6 +21,39 @@ import pandas as pd
|
|
21 |
basic_component_values = [None] * 6
|
22 |
leader_component_values = [None] * 5
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# def make_leaderboard_md(elo_results):
|
26 |
# leaderboard_md = f"""
|
@@ -38,7 +71,7 @@ leader_component_values = [None] * 5
|
|
38 |
|
39 |
def make_leaderboard_md(elo_results):
|
40 |
leaderboard_md = f"""
|
41 |
-
# ๐
|
42 |
"""
|
43 |
return leaderboard_md
|
44 |
|
@@ -58,15 +91,11 @@ def model_hyperlink(model_name, link):
|
|
58 |
|
59 |
def load_leaderboard_table_csv(filename, add_hyperlink=True):
|
60 |
df = pd.read_csv(filename)
|
|
|
61 |
for col in df.columns:
|
62 |
-
if "
|
63 |
-
df[col]
|
64 |
-
|
65 |
-
df[col] = df[col].apply(lambda x: round(x * 100, 1) if x != "-" else np.nan)
|
66 |
-
elif col == "MT-bench (win rate %)":
|
67 |
-
df[col] = df[col].apply(lambda x: round(x, 1) if x != "-" else np.nan)
|
68 |
-
elif col == "MT-bench (score)":
|
69 |
-
df[col] = df[col].apply(lambda x: round(x, 2) if x != "-" else np.nan)
|
70 |
|
71 |
if add_hyperlink and col == "Model":
|
72 |
df[col] = df.apply(lambda row: model_hyperlink(row[col], row["Link"]), axis=1)
|
@@ -125,45 +154,62 @@ def get_full_table(anony_arena_df, full_arena_df, model_table_df):
|
|
125 |
return values
|
126 |
|
127 |
|
128 |
-
def get_arena_table(
|
129 |
# sort by rating
|
130 |
-
arena_df = arena_df.sort_values(by=["rating"], ascending=False)
|
131 |
values = []
|
132 |
-
for i in range(len(
|
133 |
row = []
|
134 |
-
model_key = arena_df.index[i]
|
135 |
-
model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
|
136 |
-
|
137 |
-
]
|
|
|
138 |
|
139 |
# rank
|
140 |
row.append(i + 1)
|
141 |
# model display name
|
142 |
-
row.append(model_name)
|
143 |
# elo rating
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
# num battles
|
149 |
-
row.append(round(arena_df.iloc[i]["num_battles"]))
|
|
|
150 |
# Organization
|
151 |
-
row.append(
|
152 |
-
|
153 |
-
)
|
154 |
-
# license
|
155 |
-
row.append(
|
156 |
-
|
157 |
-
)
|
158 |
|
159 |
values.append(row)
|
160 |
return values
|
161 |
|
162 |
def make_arena_leaderboard_md(elo_results):
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
167 |
|
168 |
leaderboard_md = f"""
|
169 |
|
@@ -171,9 +217,8 @@ def make_arena_leaderboard_md(elo_results):
|
|
171 |
Total #models: **{total_models}**(anonymous). Total #votes: **{total_votes}**. Last updated: {last_updated}.
|
172 |
(Note: Only anonymous votes are considered here. Check the full leaderboard for all votes.)
|
173 |
|
174 |
-
Contribute the votes ๐ณ๏ธ at [
|
175 |
|
176 |
-
If you want to see more models, please help us [add them](https://github.com/TIGER-AI-Lab/ImagenHub?tab=readme-ov-file#-contributing-).
|
177 |
"""
|
178 |
return leaderboard_md
|
179 |
|
@@ -205,14 +250,20 @@ def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=Fa
|
|
205 |
with open(elo_results_file, "rb") as fin:
|
206 |
elo_results = pickle.load(fin)
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
p1 =
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
md = make_leaderboard_md(anony_elo_results)
|
218 |
|
@@ -222,54 +273,58 @@ def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=Fa
|
|
222 |
model_table_df = load_leaderboard_table_csv(leaderboard_table_file)
|
223 |
with gr.Tabs() as tabs:
|
224 |
# arena table
|
225 |
-
arena_table_vals = get_arena_table(
|
226 |
with gr.Tab("Arena Elo", id=0):
|
227 |
md = make_arena_leaderboard_md(anony_elo_results)
|
228 |
gr.Markdown(md, elem_id="leaderboard_markdown")
|
229 |
gr.Dataframe(
|
230 |
-
headers=[
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
],
|
|
|
239 |
datatype=[
|
240 |
"str",
|
241 |
"markdown",
|
242 |
"number",
|
243 |
-
"str",
|
244 |
"number",
|
245 |
-
"
|
246 |
-
"
|
|
|
|
|
|
|
247 |
],
|
248 |
value=arena_table_vals,
|
|
|
249 |
elem_id="arena_leaderboard_dataframe",
|
250 |
height=700,
|
251 |
-
column_widths=[50, 200, 100, 100, 100,
|
252 |
-
wrap=True,
|
253 |
-
)
|
254 |
-
with gr.Tab("Full Leaderboard", id=1):
|
255 |
-
md = make_full_leaderboard_md(full_elo_results)
|
256 |
-
gr.Markdown(md, elem_id="leaderboard_markdown")
|
257 |
-
full_table_vals = get_full_table(anony_arena_df, full_arena_df, model_table_df)
|
258 |
-
gr.Dataframe(
|
259 |
-
headers=[
|
260 |
-
"๐ค Model",
|
261 |
-
"โญ Arena Elo (anony)",
|
262 |
-
"โญ Arena Elo (full)",
|
263 |
-
"Organization",
|
264 |
-
"License",
|
265 |
-
],
|
266 |
-
datatype=["markdown", "number", "number", "str", "str"],
|
267 |
-
value=full_table_vals,
|
268 |
-
elem_id="full_leaderboard_dataframe",
|
269 |
-
column_widths=[200, 100, 100, 100, 150, 150],
|
270 |
-
height=700,
|
271 |
wrap=True,
|
272 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
if not show_plot:
|
274 |
gr.Markdown(
|
275 |
""" ## We are still collecting more votes on more models. The ranking will be updated very fruquently. Please stay tuned!
|
@@ -279,7 +334,7 @@ def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=Fa
|
|
279 |
else:
|
280 |
pass
|
281 |
|
282 |
-
leader_component_values[:] = [md, p1, p2, p3, p4]
|
283 |
|
284 |
"""
|
285 |
with gr.Row():
|
|
|
21 |
basic_component_values = [None] * 6
|
22 |
leader_component_values = [None] * 5
|
23 |
|
24 |
+
nam_dict = {
|
25 |
+
"dreamfusion": "DreamFusion",
|
26 |
+
"mvdream": "MVDream",
|
27 |
+
"lucid-dreamer": "LucidDreamer",
|
28 |
+
"magic3d": "Magic3D",
|
29 |
+
"grm-t": "GRM", "grm-i": "GRM", "grm": "GRM",
|
30 |
+
"latent-nerf": "Latent-NeRF",
|
31 |
+
"shap-e-t": "Shap-E", "shap-e-i": "Shap-E", "shap-e": "Shap-E",
|
32 |
+
"point-e-t": "Point-E", "point-e-i": "Point-E", "point-e": "Point-E",
|
33 |
+
"sjc": "SJC",
|
34 |
+
"wonder3d": "Wonder3D",
|
35 |
+
"openlrm": "OpenLRM",
|
36 |
+
"sz123": "Stable Zero123", "stable-zero123": "Stable Zero123",
|
37 |
+
"z123": "Zero123-XL", "zero123-xl": "Zero123-XL",
|
38 |
+
"magic123": "Magic123",
|
39 |
+
"lgm": "LGM",
|
40 |
+
"syncdreamer": "SyncDreamer",
|
41 |
+
"triplane-gaussian": "TriplaneGaussian",
|
42 |
+
"escher-net": "EscherNet",
|
43 |
+
"free3d": "Free3D"
|
44 |
+
}
|
45 |
+
|
46 |
+
def replace_model_name(name, rank):
|
47 |
+
name = nam_dict[name]
|
48 |
+
|
49 |
+
if rank==0:
|
50 |
+
return "๐ฅ "+name
|
51 |
+
elif rank==1:
|
52 |
+
return "๐ฅ "+name
|
53 |
+
elif rank==2:
|
54 |
+
return '๐ฅ '+name
|
55 |
+
else:
|
56 |
+
return name
|
57 |
|
58 |
# def make_leaderboard_md(elo_results):
|
59 |
# leaderboard_md = f"""
|
|
|
71 |
|
72 |
def make_leaderboard_md(elo_results):
|
73 |
leaderboard_md = f"""
|
74 |
+
# ๐ 3DGen-Arena Leaderboard
|
75 |
"""
|
76 |
return leaderboard_md
|
77 |
|
|
|
91 |
|
92 |
def load_leaderboard_table_csv(filename, add_hyperlink=True):
|
93 |
df = pd.read_csv(filename)
|
94 |
+
df = df.drop(df[df["key"].isnull()].index)
|
95 |
for col in df.columns:
|
96 |
+
if "Elo rating" in col:
|
97 |
+
print(df[col])
|
98 |
+
df[col] = df[col].apply(lambda x: int(x) if (x != "-" and x != np.nan) else np.nan)
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
if add_hyperlink and col == "Model":
|
101 |
df[col] = df.apply(lambda row: model_hyperlink(row[col], row["Link"]), axis=1)
|
|
|
154 |
return values
|
155 |
|
156 |
|
157 |
+
def get_arena_table(arena_dfs, model_table_df):
|
158 |
# sort by rating
|
159 |
+
# arena_df = arena_df.sort_values(by=["rating"], ascending=False)
|
160 |
values = []
|
161 |
+
for i in range(len(model_table_df)):
|
162 |
row = []
|
163 |
+
# model_key = arena_df.index[i]
|
164 |
+
# model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
|
165 |
+
# 0
|
166 |
+
# ]
|
167 |
+
model_name = model_table_df.iloc[i]["key"]
|
168 |
|
169 |
# rank
|
170 |
row.append(i + 1)
|
171 |
# model display name
|
172 |
+
row.append(replace_model_name(model_name, i))
|
173 |
# elo rating
|
174 |
+
num_battles = 0
|
175 |
+
for dim in arena_dfs.keys():
|
176 |
+
print(arena_dfs[dim].loc[model_name])
|
177 |
+
|
178 |
+
row.append(round(arena_dfs[dim].loc[model_name]["rating"], 2))
|
179 |
+
upper_diff = round(arena_dfs[dim].loc[model_name]["rating_q975"] - arena_dfs[dim].loc[model_name]["rating"])
|
180 |
+
lower_diff = round(arena_dfs[dim].loc[model_name]["rating"] - arena_dfs[dim].loc[model_name]["rating_q025"])
|
181 |
+
# row.append(f"+{upper_diff}/-{lower_diff}")
|
182 |
+
try:
|
183 |
+
num_battles += round(arena_dfs[dim].loc[model_name]["num_battles"])
|
184 |
+
except:
|
185 |
+
num_battles += 0
|
186 |
+
# row.append(round(arena_df.iloc[i]["rating"]))
|
187 |
+
# upper_diff = round(arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"])
|
188 |
+
# lower_diff = round(arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"])
|
189 |
+
# row.append(f"+{upper_diff}/-{lower_diff}")
|
190 |
+
row.append(round(model_table_df.iloc[i]["Arena Elo rating"], 2))
|
191 |
# num battles
|
192 |
+
# row.append(round(arena_df.iloc[i]["num_battles"]))
|
193 |
+
row.append(num_battles)
|
194 |
# Organization
|
195 |
+
# row.append(
|
196 |
+
# model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
|
197 |
+
# )
|
198 |
+
# # license
|
199 |
+
# row.append(
|
200 |
+
# model_table_df[model_table_df["key"] == model_key]["License"].values[0]
|
201 |
+
# )
|
202 |
|
203 |
values.append(row)
|
204 |
return values
|
205 |
|
206 |
def make_arena_leaderboard_md(elo_results):
|
207 |
+
total_votes = 0
|
208 |
+
for dim in elo_results.keys():
|
209 |
+
arena_df = elo_results[dim]["leaderboard_table_df"]
|
210 |
+
last_updated = elo_results[dim]["last_updated_datetime"]
|
211 |
+
total_votes += sum(arena_df["num_battles"]) // 2
|
212 |
+
total_models = len(arena_df)
|
213 |
|
214 |
leaderboard_md = f"""
|
215 |
|
|
|
217 |
Total #models: **{total_models}**(anonymous). Total #votes: **{total_votes}**. Last updated: {last_updated}.
|
218 |
(Note: Only anonymous votes are considered here. Check the full leaderboard for all votes.)
|
219 |
|
220 |
+
Contribute the votes ๐ณ๏ธ at [3DGen-Arena](https://huggingface.co/spaces/ZhangYuhan/3DGen-Arena)!
|
221 |
|
|
|
222 |
"""
|
223 |
return leaderboard_md
|
224 |
|
|
|
250 |
with open(elo_results_file, "rb") as fin:
|
251 |
elo_results = pickle.load(fin)
|
252 |
|
253 |
+
# print(elo_results)
|
254 |
+
# print(elo_results.keys())
|
255 |
+
anony_elo_results, full_elo_results = {}, {}
|
256 |
+
anony_arena_dfs, full_arena_dfs = {}, {}
|
257 |
+
p1, p2, p3, p4 = {}, {}, {}, {}
|
258 |
+
for dim in elo_results.keys():
|
259 |
+
anony_elo_results[dim] = elo_results[dim]["anony"]
|
260 |
+
full_elo_results[dim] = elo_results[dim]["full"]
|
261 |
+
anony_arena_dfs[dim] = anony_elo_results[dim]["leaderboard_table_df"]
|
262 |
+
full_arena_dfs[dim] = full_elo_results[dim]["leaderboard_table_df"]
|
263 |
+
p1[dim] = anony_elo_results[dim]["win_fraction_heatmap"]
|
264 |
+
p2[dim] = anony_elo_results[dim]["battle_count_heatmap"]
|
265 |
+
p3[dim] = anony_elo_results[dim]["bootstrap_elo_rating"]
|
266 |
+
p4[dim] = anony_elo_results[dim]["average_win_rate_bar"]
|
267 |
|
268 |
md = make_leaderboard_md(anony_elo_results)
|
269 |
|
|
|
273 |
model_table_df = load_leaderboard_table_csv(leaderboard_table_file)
|
274 |
with gr.Tabs() as tabs:
|
275 |
# arena table
|
276 |
+
arena_table_vals = get_arena_table(anony_arena_dfs, model_table_df)
|
277 |
with gr.Tab("Arena Elo", id=0):
|
278 |
md = make_arena_leaderboard_md(anony_elo_results)
|
279 |
gr.Markdown(md, elem_id="leaderboard_markdown")
|
280 |
gr.Dataframe(
|
281 |
+
# headers=[
|
282 |
+
# "Rank",
|
283 |
+
# "๐ค Model",
|
284 |
+
# "โญ Arena Elo",
|
285 |
+
# "๐ 95% CI",
|
286 |
+
# "๐ณ๏ธ Votes",
|
287 |
+
# "Organization",
|
288 |
+
# "License",
|
289 |
+
# ],
|
290 |
+
headers=["Rank", "๐ค Model"] + [f"๐ {dim} Elo" for dim in anony_arena_dfs.keys()] + ["โญ Avg. Arena Elo Ranking", "๐ฎ Votes"],
|
291 |
datatype=[
|
292 |
"str",
|
293 |
"markdown",
|
294 |
"number",
|
|
|
295 |
"number",
|
296 |
+
"number",
|
297 |
+
"number",
|
298 |
+
"number",
|
299 |
+
"number",
|
300 |
+
"number"
|
301 |
],
|
302 |
value=arena_table_vals,
|
303 |
+
# value=model_table_df,
|
304 |
elem_id="arena_leaderboard_dataframe",
|
305 |
height=700,
|
306 |
+
column_widths=[50, 200, 100, 100, 100, 100, 100, 100, 100],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
wrap=True,
|
308 |
)
|
309 |
+
# with gr.Tab("Full Leaderboard", id=1):
|
310 |
+
# md = make_full_leaderboard_md(full_elo_results)
|
311 |
+
# gr.Markdown(md, elem_id="leaderboard_markdown")
|
312 |
+
# full_table_vals = get_full_table(anony_arena_df, full_arena_df, model_table_df)
|
313 |
+
# gr.Dataframe(
|
314 |
+
# headers=[
|
315 |
+
# "๐ค Model",
|
316 |
+
# "โญ Arena Elo (anony)",
|
317 |
+
# "โญ Arena Elo (full)",
|
318 |
+
# "Organization",
|
319 |
+
# "License",
|
320 |
+
# ],
|
321 |
+
# datatype=["markdown", "number", "number", "str", "str"],
|
322 |
+
# value=full_table_vals,
|
323 |
+
# elem_id="full_leaderboard_dataframe",
|
324 |
+
# column_widths=[200, 100, 100, 100, 150, 150],
|
325 |
+
# height=700,
|
326 |
+
# wrap=True,
|
327 |
+
# )
|
328 |
if not show_plot:
|
329 |
gr.Markdown(
|
330 |
""" ## We are still collecting more votes on more models. The ranking will be updated very fruquently. Please stay tuned!
|
|
|
334 |
else:
|
335 |
pass
|
336 |
|
337 |
+
# leader_component_values[:] = [md, p1, p2, p3, p4]
|
338 |
|
339 |
"""
|
340 |
with gr.Row():
|
serve/utils.py
CHANGED
@@ -66,6 +66,7 @@ block_css = """
|
|
66 |
}
|
67 |
#leaderboard_dataframe td {
|
68 |
line-height: 0.1em;
|
|
|
69 |
}
|
70 |
#about_markdown {
|
71 |
font-size: 110%
|
|
|
66 |
}
|
67 |
#leaderboard_dataframe td {
|
68 |
line-height: 0.1em;
|
69 |
+
font-weight: bold;
|
70 |
}
|
71 |
#about_markdown {
|
72 |
font-size: 110%
|