Zeyue7's picture
AudioX
8ab1cf8
raw
history blame contribute delete
28.3 kB
import torch
import logging, warnings
import string
import typing as tp
import gc
from .adp import NumberEmbedder
from ..inference.utils import set_audio_channels
from .factory import create_pretransform_from_config
from .pretransforms import Pretransform
from .utils import load_ckpt_state_dict
from torch import nn
from transformers import AutoProcessor, CLIPVisionModelWithProjection
import einops
from .temptransformer import SA_Transformer
from torchvision import transforms
import torch
import einops
import torchvision.transforms as transforms
class Conditioner(nn.Module):
def __init__(
self,
dim: int,
output_dim: int,
project_out: bool = False
):
super().__init__()
self.dim = dim
self.output_dim = output_dim
self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()
def forward(self, x: tp.Any) -> tp.Any:
raise NotImplementedError()
class IntConditioner(Conditioner):
def __init__(self,
output_dim: int,
min_val: int=0,
max_val: int=512
):
super().__init__(output_dim, output_dim)
self.min_val = min_val
self.max_val = max_val
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim).requires_grad_(True)
def forward(self, ints: tp.List[int], device=None) -> tp.Any:
#self.int_embedder.to(device)
ints = torch.tensor(ints).to(device)
ints = ints.clamp(self.min_val, self.max_val)
int_embeds = self.int_embedder(ints).unsqueeze(1)
return [int_embeds, torch.ones(int_embeds.shape[0], 1).to(device)]
class NumberConditioner(Conditioner):
'''
Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
'''
def __init__(self,
output_dim: int,
min_val: float=0,
max_val: float=1
):
super().__init__(output_dim, output_dim)
self.min_val = min_val
self.max_val = max_val
self.embedder = NumberEmbedder(features=output_dim)
def forward(self, floats: tp.List[float], device=None) -> tp.Any:
# Cast the inputs to floats
floats = [float(x) for x in floats]
floats = torch.tensor(floats).to(device)
floats = floats.clamp(self.min_val, self.max_val)
normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)
# Cast floats to same type as embedder
embedder_dtype = next(self.embedder.parameters()).dtype
normalized_floats = normalized_floats.to(embedder_dtype)
float_embeds = self.embedder(normalized_floats).unsqueeze(1)
return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]
class CLAPTextConditioner(Conditioner):
def __init__(self,
output_dim: int,
clap_ckpt_path,
use_text_features = False,
feature_layer_ix: int = -1,
audio_model_type="HTSAT-base",
enable_fusion=True,
project_out: bool = False,
finetune: bool = False):
super().__init__(768 if use_text_features else 512, output_dim, project_out=project_out)
self.use_text_features = use_text_features
self.feature_layer_ix = feature_layer_ix
self.finetune = finetune
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
import laion_clap
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
if self.finetune:
self.model = model
else:
self.__dict__["model"] = model
state_dict = clap_load_state_dict(clap_ckpt_path)
self.model.model.load_state_dict(state_dict, strict=False)
if self.finetune:
self.model.model.text_branch.requires_grad_(True)
self.model.model.text_branch.train()
else:
self.model.model.text_branch.requires_grad_(False)
self.model.model.text_branch.eval()
finally:
logging.disable(previous_level)
del self.model.model.audio_branch
gc.collect()
torch.cuda.empty_cache()
def get_clap_features(self, prompts, layer_ix=-2, device: tp.Any = "cuda"):
prompt_tokens = self.model.tokenizer(prompts)
attention_mask = prompt_tokens["attention_mask"].to(device=device, non_blocking=True)
prompt_features = self.model.model.text_branch(
input_ids=prompt_tokens["input_ids"].to(device=device, non_blocking=True),
attention_mask=attention_mask,
output_hidden_states=True
)["hidden_states"][layer_ix]
return prompt_features, attention_mask
def forward(self, texts: tp.List[str], device: tp.Any = "cuda") -> tp.Any:
self.model.to(device)
if self.use_text_features:
if len(texts) == 1:
text_features, text_attention_mask = self.get_clap_features([texts[0], ""], layer_ix=self.feature_layer_ix, device=device)
text_features = text_features[:1, ...]
text_attention_mask = text_attention_mask[:1, ...]
else:
text_features, text_attention_mask = self.get_clap_features(texts, layer_ix=self.feature_layer_ix, device=device)
return [self.proj_out(text_features), text_attention_mask]
# Fix for CLAP bug when only one text is passed
if len(texts) == 1:
text_embedding = self.model.get_text_embedding([texts[0], ""], use_tensor=True)[:1, ...]
else:
text_embedding = self.model.get_text_embedding(texts, use_tensor=True)
text_embedding = text_embedding.unsqueeze(1).to(device)
return [self.proj_out(text_embedding), torch.ones(text_embedding.shape[0], 1).to(device)]
class CLAPAudioConditioner(Conditioner):
def __init__(self,
output_dim: int,
clap_ckpt_path,
audio_model_type="HTSAT-base",
enable_fusion=True,
project_out: bool = False):
super().__init__(512, output_dim, project_out=project_out)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
import laion_clap
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
if self.finetune:
self.model = model
else:
self.__dict__["model"] = model
state_dict = clap_load_state_dict(clap_ckpt_path)
self.model.model.load_state_dict(state_dict, strict=False)
if self.finetune:
self.model.model.audio_branch.requires_grad_(True)
self.model.model.audio_branch.train()
else:
self.model.model.audio_branch.requires_grad_(False)
self.model.model.audio_branch.eval()
finally:
logging.disable(previous_level)
del self.model.model.text_branch
gc.collect()
torch.cuda.empty_cache()
def forward(self, audios: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]] , device: tp.Any = "cuda") -> tp.Any:
self.model.to(device)
if isinstance(audios, list) or isinstance(audios, tuple):
audios = torch.cat(audios, dim=0)
# Convert to mono
mono_audios = audios.mean(dim=1)
with torch.cuda.amp.autocast(enabled=False):
audio_embedding = self.model.get_audio_embedding_from_data(mono_audios.float(), use_tensor=True)
audio_embedding = audio_embedding.unsqueeze(1).to(device)
return [self.proj_out(audio_embedding), torch.ones(audio_embedding.shape[0], 1).to(device)]
class CLIPConditioner(Conditioner):
CLIP_MODELS = ["clip-vit-base-patch32"]
def __init__(
self,
output_dim: int,
clip_model_name: str = "clip-vit-base-patch32",
video_fps: int = 5,
out_features: str = 128,
enable_grad: bool = False,
in_features: int = 5000,
project_out: bool = False,
):
assert clip_model_name in self.CLIP_MODELS, f"Unknown clip model name: {clip_model_name}"
super().__init__(dim = 768, output_dim=output_dim, project_out=project_out)
sa_depth=4
num_heads=16
dim_head=64
hidden_scale=4
duration = 10
self.clip_model_name=clip_model_name
if self.clip_model_name=='clip-vit-base-patch32':
out_features = 128
temporal_dim=768
self.empty_visual_feat = nn.Parameter(torch.zeros(1, out_features, temporal_dim), requires_grad=True)
nn.init.constant_(self.empty_visual_feat, 0)
in_features = 50*video_fps*duration
self.visual_encoder_model = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-base-patch32')
self.proj = nn.Linear(in_features=in_features, out_features=out_features)
self.in_features = in_features
self.out_features = out_features
self.Temp_transformer = SA_Transformer(temporal_dim, sa_depth, num_heads, dim_head, temporal_dim*hidden_scale, 0.)
self.Temp_pos_embedding = nn.Parameter(torch.randn(1, duration*video_fps, temporal_dim))
clip_mean = [0.48145466, 0.4578275, 0.40821073]
clip_std = [0.26862954, 0.26130258, 0.27577711]
self.preprocess_CLIP = transforms.Compose([
transforms.Normalize(mean=clip_mean, std=clip_std)
])
def process_video_with_custom_preprocessing(self, video_tensor):
video_tensor = video_tensor / 255.0
video_tensor = self.preprocess_CLIP(video_tensor)
return video_tensor
def init_first_from_ckpt(self, path):
model = torch.load(path, map_location="cpu")
if "state_dict" in list(model.keys()):
model = model["state_dict"]
# Remove: module prefix
new_model = {}
for key in model.keys():
new_key = key.replace("module.","")
new_model[new_key] = model[key]
missing, unexpected = self.visual_encoder_model.load_state_dict(new_model, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
def forward(self, Video_tensors: tp.List[torch.Tensor], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
visual_encoder_model = self.visual_encoder_model.eval().to(device)
proj = self.proj.to(device)
original_videos = torch.cat(Video_tensors, dim=0).to(device)
batch_size, time_length, _, _, _ = original_videos.size()
is_zero = torch.all(original_videos == 0, dim=1)
is_zero = torch.all(is_zero, dim=1)
is_zero = torch.all(is_zero, dim=1)
is_zero = torch.all(is_zero, dim=1)
Video_tensors = original_videos
Video_tensors = einops.rearrange(Video_tensors, 'b t c h w -> (b t) c h w')
video_cond_pixel_values = self.process_video_with_custom_preprocessing(video_tensor=Video_tensors.to(device)).to(device)
if self.clip_model_name=='clip-vit-base-patch32':
with torch.no_grad():
outputs = visual_encoder_model(pixel_values=video_cond_pixel_values)
video_hidden = outputs.last_hidden_state
video_hidden = einops.rearrange(video_hidden, '(b t) q h -> (b q) t h',b=batch_size,t=time_length)
video_hidden += self.Temp_pos_embedding
video_hidden = self.Temp_transformer(video_hidden)
video_hidden = einops.rearrange(video_hidden, '(b q) t h -> b (t q) h',b=batch_size,t=time_length)
video_hidden = proj(video_hidden.view(-1, self.in_features))
video_hidden = video_hidden.view(batch_size, self.out_features, -1)
empty_visual_feat = self.empty_visual_feat.expand(batch_size, -1, -1)
is_zero_expanded = is_zero.view(batch_size, 1, 1)
video_hidden = torch.where(is_zero_expanded, empty_visual_feat, video_hidden)
return video_hidden, torch.ones(video_hidden.shape[0], 1).to(device)
class T5Conditioner(Conditioner):
T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
"google/flan-t5-xl", "google/flan-t5-xxl"]
T5_MODEL_DIMS = {
"t5-small": 512,
"t5-base": 768,
"t5-large": 1024,
"t5-3b": 1024,
"t5-11b": 1024,
"t5-xl": 2048,
"t5-xxl": 4096,
"google/flan-t5-small": 512,
"google/flan-t5-base": 768,
"google/flan-t5-large": 1024,
"google/flan-t5-3b": 1024,
"google/flan-t5-11b": 1024,
"google/flan-t5-xl": 2048,
"google/flan-t5-xxl": 4096,
}
def __init__(
self,
output_dim: int,
t5_model_name: str = "t5-base",
max_length: str = 128,
enable_grad: bool = False,
project_out: bool = False,
):
assert t5_model_name in self.T5_MODELS, f"Unknown T5 model name: {t5_model_name}"
super().__init__(self.T5_MODEL_DIMS[t5_model_name], output_dim, project_out=project_out)
from transformers import T5EncoderModel, AutoTokenizer
self.max_length = max_length
self.enable_grad = enable_grad
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
self.tokenizer = AutoTokenizer.from_pretrained(t5_model_name)
model = T5EncoderModel.from_pretrained(t5_model_name).train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
finally:
logging.disable(previous_level)
if self.enable_grad:
self.model = model
else:
self.__dict__["model"] = model
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.model.to(device)
self.proj_out.to(device)
encoded = self.tokenizer(
texts,
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt",
)
input_ids = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
self.model.eval()
with torch.cuda.amp.autocast(dtype=torch.float16), torch.set_grad_enabled(self.enable_grad):
embeddings = self.model(
input_ids=input_ids, attention_mask=attention_mask
)["last_hidden_state"]
embeddings = self.proj_out(embeddings.float())
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
return embeddings, attention_mask
class PhonemeConditioner(Conditioner):
"""
A conditioner that turns text into phonemes and embeds them using a lookup table
Only works for English text
Args:
output_dim: the dimension of the output embeddings
max_length: the maximum number of phonemes to embed
project_out: whether to add another linear projection to the output embeddings
"""
def __init__(
self,
output_dim: int,
max_length: int = 1024,
project_out: bool = False,
):
super().__init__(output_dim, output_dim, project_out=project_out)
from g2p_en import G2p
self.max_length = max_length
self.g2p = G2p()
# Reserving 0 for padding, 1 for ignored
self.phoneme_embedder = nn.Embedding(len(self.g2p.phonemes) + 2, output_dim)
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.phoneme_embedder.to(device)
self.proj_out.to(device)
batch_phonemes = [self.g2p(text) for text in texts] # shape [batch_size, length]
phoneme_ignore = [" ", *string.punctuation]
# Remove ignored phonemes and cut to max length
batch_phonemes = [[p if p not in phoneme_ignore else "_" for p in phonemes] for phonemes in batch_phonemes]
# Convert to ids
phoneme_ids = [[self.g2p.p2idx[p] + 2 if p in self.g2p.p2idx else 1 for p in phonemes] for phonemes in batch_phonemes]
#Pad to match longest and make a mask tensor for the padding
longest = max([len(ids) for ids in phoneme_ids])
phoneme_ids = [ids + [0] * (longest - len(ids)) for ids in phoneme_ids]
phoneme_ids = torch.tensor(phoneme_ids).to(device)
# Convert to embeddings
phoneme_embeds = self.phoneme_embedder(phoneme_ids)
phoneme_embeds = self.proj_out(phoneme_embeds)
return phoneme_embeds, torch.ones(phoneme_embeds.shape[0], phoneme_embeds.shape[1]).to(device)
class TokenizerLUTConditioner(Conditioner):
"""
A conditioner that embeds text using a lookup table on a pretrained tokenizer's vocabulary
Args:
tokenizer_name: the name of the tokenizer from the Hugging Face transformers library
output_dim: the dimension of the output embeddings
max_length: the maximum length of the text to embed
project_out: whether to add another linear projection to the output embeddings
"""
def __init__(
self,
tokenizer_name: str, # Name of a tokenizer from the Hugging Face transformers library
output_dim: int,
max_length: int = 1024,
project_out: bool = False,
):
super().__init__(output_dim, output_dim, project_out=project_out)
from transformers import AutoTokenizer
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
finally:
logging.disable(previous_level)
self.max_length = max_length
self.token_embedder = nn.Embedding(len(self.tokenizer), output_dim)
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.proj_out.to(device)
encoded = self.tokenizer(
texts,
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt",
)
input_ids = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
embeddings = self.token_embedder(input_ids)
embeddings = self.proj_out(embeddings)
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
return embeddings, attention_mask
class PretransformConditioner(Conditioner):
"""
A conditioner that uses a pretransform's encoder for conditioning
Args:
pretransform: an instantiated pretransform to use for conditioning
output_dim: the dimension of the output embeddings
"""
def __init__(self, pretransform: Pretransform, output_dim: int):
super().__init__(pretransform.encoded_channels, output_dim)
self.pretransform = pretransform
def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.pretransform.to(device)
self.proj_out.to(device)
if isinstance(audio, list) or isinstance(audio, tuple):
audio = torch.cat(audio, dim=0)
# Convert audio to pretransform input channels
audio = set_audio_channels(audio, self.pretransform.io_channels)
latents = self.pretransform.encode(audio)
latents = self.proj_out(latents)
return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)]
class AudioAutoencoderConditioner(Conditioner):
"""
A conditioner that uses a pretransform's encoder for conditioning
Args:
pretransform: an instantiated pretransform to use for conditioning
output_dim: the dimension of the output embeddings
"""
def __init__(self, pretransform: Pretransform, output_dim: int):
super().__init__(pretransform.encoded_channels, output_dim)
self.pretransform = pretransform
self.empty_audio_feat = nn.Parameter(torch.zeros(1, 215, self.proj_out.out_features), requires_grad=True)
nn.init.constant_(self.empty_audio_feat, 0)
def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.pretransform.to(device)
self.proj_out.to(device)
if isinstance(audio, list) or isinstance(audio, tuple):
original_audios = torch.cat(audio, dim=0).to(device)
is_zero = torch.all(original_audios == 0, dim=(1,2))
audio = original_audios
# Convert audio to pretransform input channels
audio = set_audio_channels(audio, self.pretransform.io_channels)
latents = self.pretransform.encode(audio)
latents = latents.permute(0, 2, 1)
latents = self.proj_out(latents)
empty_audio_feat = self.empty_audio_feat.expand(latents.shape[0], -1, -1)
is_zero_expanded = is_zero.view(latents.shape[0], 1, 1)
latents = torch.where(is_zero_expanded, empty_audio_feat, latents)
return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)]
class MultiConditioner(nn.Module):
"""
A module that applies multiple conditioners to an input dictionary based on the keys
Args:
conditioners: a dictionary of conditioners with keys corresponding to the keys of the conditioning input dictionary (e.g. "prompt")
default_keys: a dictionary of default keys to use if the key is not in the input dictionary (e.g. {"prompt_t5": "prompt"})
"""
def __init__(self, conditioners: tp.Dict[str, Conditioner], default_keys: tp.Dict[str, str] = {}):
super().__init__()
self.conditioners = nn.ModuleDict(conditioners)
self.default_keys = default_keys
def forward(self, batch_metadata: tp.List[tp.Dict[str, tp.Any]], device: tp.Union[torch.device, str]) -> tp.Dict[str, tp.Any]:
output = {}
for key, conditioner in self.conditioners.items():
condition_key = key
conditioner_inputs = []
for x in batch_metadata:
if condition_key not in x:
if condition_key in self.default_keys:
condition_key = self.default_keys[condition_key]
else:
raise ValueError(f"Conditioner key {condition_key} not found in batch metadata")
if isinstance(x[condition_key], list) or isinstance(x[condition_key], tuple) and len(x[condition_key]) == 1:
conditioner_input = x[condition_key][0]
else:
conditioner_input = x[condition_key]
conditioner_inputs.append(conditioner_input)
output[key] = conditioner(conditioner_inputs, device)
return output
def create_multi_conditioner_from_conditioning_config(config: tp.Dict[str, tp.Any]) -> MultiConditioner:
"""
Create a MultiConditioner from a conditioning config dictionary
Args:
config: the conditioning config dictionary
device: the device to put the conditioners on
"""
conditioners = {}
cond_dim = config["cond_dim"]
default_keys = config.get("default_keys", {})
for conditioner_info in config["configs"]:
id = conditioner_info["id"]
conditioner_type = conditioner_info["type"]
conditioner_config = {"output_dim": cond_dim}
conditioner_config.update(conditioner_info["config"])
if conditioner_type == "t5":
conditioners[id] = T5Conditioner(**conditioner_config)
elif conditioner_type == "clip":
conditioners[id] = CLIPConditioner(**conditioner_config)
elif conditioner_type == "clap_text":
conditioners[id] = CLAPTextConditioner(**conditioner_config)
elif conditioner_type == "clap_audio":
conditioners[id] = CLAPAudioConditioner(**conditioner_config)
elif conditioner_type == "int":
conditioners[id] = IntConditioner(**conditioner_config)
elif conditioner_type == "number":
conditioners[id] = NumberConditioner(**conditioner_config)
elif conditioner_type == "phoneme":
conditioners[id] = PhonemeConditioner(**conditioner_config)
elif conditioner_type == "lut":
conditioners[id] = TokenizerLUTConditioner(**conditioner_config)
elif conditioner_type == "pretransform":
sample_rate = conditioner_config.pop("sample_rate", None)
assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners"
pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate)
if conditioner_config.get("pretransform_ckpt_path", None) is not None:
pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path")))
conditioners[id] = PretransformConditioner(pretransform, **conditioner_config)
elif conditioner_type == "audio_autoencoder":
sample_rate = conditioner_config.pop("sample_rate", None)
assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners"
pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate)
if conditioner_config.get("pretransform_ckpt_path", None) is not None:
pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path")))
conditioners[id] = AudioAutoencoderConditioner(pretransform, **conditioner_config)
else:
raise ValueError(f"Unknown conditioner type: {conditioner_type}")
return MultiConditioner(conditioners, default_keys=default_keys)