Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import logging, warnings | |
| import string | |
| import typing as tp | |
| import gc | |
| from .adp import NumberEmbedder | |
| from ..inference.utils import set_audio_channels | |
| from .factory import create_pretransform_from_config | |
| from .pretransforms import Pretransform | |
| from .utils import load_ckpt_state_dict | |
| from torch import nn | |
| from transformers import AutoProcessor, CLIPVisionModelWithProjection | |
| import einops | |
| from .temptransformer import SA_Transformer | |
| from torchvision import transforms | |
| import torch | |
| import einops | |
| import torchvision.transforms as transforms | |
| class Conditioner(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| output_dim: int, | |
| project_out: bool = False | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.output_dim = output_dim | |
| self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity() | |
| def forward(self, x: tp.Any) -> tp.Any: | |
| raise NotImplementedError() | |
| class IntConditioner(Conditioner): | |
| def __init__(self, | |
| output_dim: int, | |
| min_val: int=0, | |
| max_val: int=512 | |
| ): | |
| super().__init__(output_dim, output_dim) | |
| self.min_val = min_val | |
| self.max_val = max_val | |
| self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim).requires_grad_(True) | |
| def forward(self, ints: tp.List[int], device=None) -> tp.Any: | |
| #self.int_embedder.to(device) | |
| ints = torch.tensor(ints).to(device) | |
| ints = ints.clamp(self.min_val, self.max_val) | |
| int_embeds = self.int_embedder(ints).unsqueeze(1) | |
| return [int_embeds, torch.ones(int_embeds.shape[0], 1).to(device)] | |
| class NumberConditioner(Conditioner): | |
| ''' | |
| Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings | |
| ''' | |
| def __init__(self, | |
| output_dim: int, | |
| min_val: float=0, | |
| max_val: float=1 | |
| ): | |
| super().__init__(output_dim, output_dim) | |
| self.min_val = min_val | |
| self.max_val = max_val | |
| self.embedder = NumberEmbedder(features=output_dim) | |
| def forward(self, floats: tp.List[float], device=None) -> tp.Any: | |
| # Cast the inputs to floats | |
| floats = [float(x) for x in floats] | |
| floats = torch.tensor(floats).to(device) | |
| floats = floats.clamp(self.min_val, self.max_val) | |
| normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val) | |
| # Cast floats to same type as embedder | |
| embedder_dtype = next(self.embedder.parameters()).dtype | |
| normalized_floats = normalized_floats.to(embedder_dtype) | |
| float_embeds = self.embedder(normalized_floats).unsqueeze(1) | |
| return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)] | |
| class CLAPTextConditioner(Conditioner): | |
| def __init__(self, | |
| output_dim: int, | |
| clap_ckpt_path, | |
| use_text_features = False, | |
| feature_layer_ix: int = -1, | |
| audio_model_type="HTSAT-base", | |
| enable_fusion=True, | |
| project_out: bool = False, | |
| finetune: bool = False): | |
| super().__init__(768 if use_text_features else 512, output_dim, project_out=project_out) | |
| self.use_text_features = use_text_features | |
| self.feature_layer_ix = feature_layer_ix | |
| self.finetune = finetune | |
| # Suppress logging from transformers | |
| previous_level = logging.root.manager.disable | |
| logging.disable(logging.ERROR) | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter("ignore") | |
| try: | |
| import laion_clap | |
| from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict | |
| model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu') | |
| if self.finetune: | |
| self.model = model | |
| else: | |
| self.__dict__["model"] = model | |
| state_dict = clap_load_state_dict(clap_ckpt_path) | |
| self.model.model.load_state_dict(state_dict, strict=False) | |
| if self.finetune: | |
| self.model.model.text_branch.requires_grad_(True) | |
| self.model.model.text_branch.train() | |
| else: | |
| self.model.model.text_branch.requires_grad_(False) | |
| self.model.model.text_branch.eval() | |
| finally: | |
| logging.disable(previous_level) | |
| del self.model.model.audio_branch | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_clap_features(self, prompts, layer_ix=-2, device: tp.Any = "cuda"): | |
| prompt_tokens = self.model.tokenizer(prompts) | |
| attention_mask = prompt_tokens["attention_mask"].to(device=device, non_blocking=True) | |
| prompt_features = self.model.model.text_branch( | |
| input_ids=prompt_tokens["input_ids"].to(device=device, non_blocking=True), | |
| attention_mask=attention_mask, | |
| output_hidden_states=True | |
| )["hidden_states"][layer_ix] | |
| return prompt_features, attention_mask | |
| def forward(self, texts: tp.List[str], device: tp.Any = "cuda") -> tp.Any: | |
| self.model.to(device) | |
| if self.use_text_features: | |
| if len(texts) == 1: | |
| text_features, text_attention_mask = self.get_clap_features([texts[0], ""], layer_ix=self.feature_layer_ix, device=device) | |
| text_features = text_features[:1, ...] | |
| text_attention_mask = text_attention_mask[:1, ...] | |
| else: | |
| text_features, text_attention_mask = self.get_clap_features(texts, layer_ix=self.feature_layer_ix, device=device) | |
| return [self.proj_out(text_features), text_attention_mask] | |
| # Fix for CLAP bug when only one text is passed | |
| if len(texts) == 1: | |
| text_embedding = self.model.get_text_embedding([texts[0], ""], use_tensor=True)[:1, ...] | |
| else: | |
| text_embedding = self.model.get_text_embedding(texts, use_tensor=True) | |
| text_embedding = text_embedding.unsqueeze(1).to(device) | |
| return [self.proj_out(text_embedding), torch.ones(text_embedding.shape[0], 1).to(device)] | |
| class CLAPAudioConditioner(Conditioner): | |
| def __init__(self, | |
| output_dim: int, | |
| clap_ckpt_path, | |
| audio_model_type="HTSAT-base", | |
| enable_fusion=True, | |
| project_out: bool = False): | |
| super().__init__(512, output_dim, project_out=project_out) | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| # Suppress logging from transformers | |
| previous_level = logging.root.manager.disable | |
| logging.disable(logging.ERROR) | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter("ignore") | |
| try: | |
| import laion_clap | |
| from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict | |
| model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu') | |
| if self.finetune: | |
| self.model = model | |
| else: | |
| self.__dict__["model"] = model | |
| state_dict = clap_load_state_dict(clap_ckpt_path) | |
| self.model.model.load_state_dict(state_dict, strict=False) | |
| if self.finetune: | |
| self.model.model.audio_branch.requires_grad_(True) | |
| self.model.model.audio_branch.train() | |
| else: | |
| self.model.model.audio_branch.requires_grad_(False) | |
| self.model.model.audio_branch.eval() | |
| finally: | |
| logging.disable(previous_level) | |
| del self.model.model.text_branch | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def forward(self, audios: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]] , device: tp.Any = "cuda") -> tp.Any: | |
| self.model.to(device) | |
| if isinstance(audios, list) or isinstance(audios, tuple): | |
| audios = torch.cat(audios, dim=0) | |
| # Convert to mono | |
| mono_audios = audios.mean(dim=1) | |
| with torch.cuda.amp.autocast(enabled=False): | |
| audio_embedding = self.model.get_audio_embedding_from_data(mono_audios.float(), use_tensor=True) | |
| audio_embedding = audio_embedding.unsqueeze(1).to(device) | |
| return [self.proj_out(audio_embedding), torch.ones(audio_embedding.shape[0], 1).to(device)] | |
| class CLIPConditioner(Conditioner): | |
| CLIP_MODELS = ["clip-vit-base-patch32"] | |
| def __init__( | |
| self, | |
| output_dim: int, | |
| clip_model_name: str = "clip-vit-base-patch32", | |
| video_fps: int = 5, | |
| out_features: str = 128, | |
| enable_grad: bool = False, | |
| in_features: int = 5000, | |
| project_out: bool = False, | |
| ): | |
| assert clip_model_name in self.CLIP_MODELS, f"Unknown clip model name: {clip_model_name}" | |
| super().__init__(dim = 768, output_dim=output_dim, project_out=project_out) | |
| sa_depth=4 | |
| num_heads=16 | |
| dim_head=64 | |
| hidden_scale=4 | |
| duration = 10 | |
| self.clip_model_name=clip_model_name | |
| if self.clip_model_name=='clip-vit-base-patch32': | |
| out_features = 128 | |
| temporal_dim=768 | |
| self.empty_visual_feat = nn.Parameter(torch.zeros(1, out_features, temporal_dim), requires_grad=True) | |
| nn.init.constant_(self.empty_visual_feat, 0) | |
| in_features = 50*video_fps*duration | |
| self.visual_encoder_model = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-base-patch32') | |
| self.proj = nn.Linear(in_features=in_features, out_features=out_features) | |
| self.in_features = in_features | |
| self.out_features = out_features | |
| self.Temp_transformer = SA_Transformer(temporal_dim, sa_depth, num_heads, dim_head, temporal_dim*hidden_scale, 0.) | |
| self.Temp_pos_embedding = nn.Parameter(torch.randn(1, duration*video_fps, temporal_dim)) | |
| clip_mean = [0.48145466, 0.4578275, 0.40821073] | |
| clip_std = [0.26862954, 0.26130258, 0.27577711] | |
| self.preprocess_CLIP = transforms.Compose([ | |
| transforms.Normalize(mean=clip_mean, std=clip_std) | |
| ]) | |
| def process_video_with_custom_preprocessing(self, video_tensor): | |
| video_tensor = video_tensor / 255.0 | |
| video_tensor = self.preprocess_CLIP(video_tensor) | |
| return video_tensor | |
| def init_first_from_ckpt(self, path): | |
| model = torch.load(path, map_location="cpu") | |
| if "state_dict" in list(model.keys()): | |
| model = model["state_dict"] | |
| # Remove: module prefix | |
| new_model = {} | |
| for key in model.keys(): | |
| new_key = key.replace("module.","") | |
| new_model[new_key] = model[key] | |
| missing, unexpected = self.visual_encoder_model.load_state_dict(new_model, strict=False) | |
| print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
| if len(missing) > 0: | |
| print(f"Missing Keys: {missing}") | |
| if len(unexpected) > 0: | |
| print(f"Unexpected Keys: {unexpected}") | |
| def forward(self, Video_tensors: tp.List[torch.Tensor], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
| visual_encoder_model = self.visual_encoder_model.eval().to(device) | |
| proj = self.proj.to(device) | |
| original_videos = torch.cat(Video_tensors, dim=0).to(device) | |
| batch_size, time_length, _, _, _ = original_videos.size() | |
| is_zero = torch.all(original_videos == 0, dim=1) | |
| is_zero = torch.all(is_zero, dim=1) | |
| is_zero = torch.all(is_zero, dim=1) | |
| is_zero = torch.all(is_zero, dim=1) | |
| Video_tensors = original_videos | |
| Video_tensors = einops.rearrange(Video_tensors, 'b t c h w -> (b t) c h w') | |
| video_cond_pixel_values = self.process_video_with_custom_preprocessing(video_tensor=Video_tensors.to(device)).to(device) | |
| if self.clip_model_name=='clip-vit-base-patch32': | |
| with torch.no_grad(): | |
| outputs = visual_encoder_model(pixel_values=video_cond_pixel_values) | |
| video_hidden = outputs.last_hidden_state | |
| video_hidden = einops.rearrange(video_hidden, '(b t) q h -> (b q) t h',b=batch_size,t=time_length) | |
| video_hidden += self.Temp_pos_embedding | |
| video_hidden = self.Temp_transformer(video_hidden) | |
| video_hidden = einops.rearrange(video_hidden, '(b q) t h -> b (t q) h',b=batch_size,t=time_length) | |
| video_hidden = proj(video_hidden.view(-1, self.in_features)) | |
| video_hidden = video_hidden.view(batch_size, self.out_features, -1) | |
| empty_visual_feat = self.empty_visual_feat.expand(batch_size, -1, -1) | |
| is_zero_expanded = is_zero.view(batch_size, 1, 1) | |
| video_hidden = torch.where(is_zero_expanded, empty_visual_feat, video_hidden) | |
| return video_hidden, torch.ones(video_hidden.shape[0], 1).to(device) | |
| class T5Conditioner(Conditioner): | |
| T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", | |
| "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", | |
| "google/flan-t5-xl", "google/flan-t5-xxl"] | |
| T5_MODEL_DIMS = { | |
| "t5-small": 512, | |
| "t5-base": 768, | |
| "t5-large": 1024, | |
| "t5-3b": 1024, | |
| "t5-11b": 1024, | |
| "t5-xl": 2048, | |
| "t5-xxl": 4096, | |
| "google/flan-t5-small": 512, | |
| "google/flan-t5-base": 768, | |
| "google/flan-t5-large": 1024, | |
| "google/flan-t5-3b": 1024, | |
| "google/flan-t5-11b": 1024, | |
| "google/flan-t5-xl": 2048, | |
| "google/flan-t5-xxl": 4096, | |
| } | |
| def __init__( | |
| self, | |
| output_dim: int, | |
| t5_model_name: str = "t5-base", | |
| max_length: str = 128, | |
| enable_grad: bool = False, | |
| project_out: bool = False, | |
| ): | |
| assert t5_model_name in self.T5_MODELS, f"Unknown T5 model name: {t5_model_name}" | |
| super().__init__(self.T5_MODEL_DIMS[t5_model_name], output_dim, project_out=project_out) | |
| from transformers import T5EncoderModel, AutoTokenizer | |
| self.max_length = max_length | |
| self.enable_grad = enable_grad | |
| # Suppress logging from transformers | |
| previous_level = logging.root.manager.disable | |
| logging.disable(logging.ERROR) | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter("ignore") | |
| try: | |
| self.tokenizer = AutoTokenizer.from_pretrained(t5_model_name) | |
| model = T5EncoderModel.from_pretrained(t5_model_name).train(enable_grad).requires_grad_(enable_grad).to(torch.float16) | |
| finally: | |
| logging.disable(previous_level) | |
| if self.enable_grad: | |
| self.model = model | |
| else: | |
| self.__dict__["model"] = model | |
| def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
| self.model.to(device) | |
| self.proj_out.to(device) | |
| encoded = self.tokenizer( | |
| texts, | |
| truncation=True, | |
| max_length=self.max_length, | |
| padding="max_length", | |
| return_tensors="pt", | |
| ) | |
| input_ids = encoded["input_ids"].to(device) | |
| attention_mask = encoded["attention_mask"].to(device).to(torch.bool) | |
| self.model.eval() | |
| with torch.cuda.amp.autocast(dtype=torch.float16), torch.set_grad_enabled(self.enable_grad): | |
| embeddings = self.model( | |
| input_ids=input_ids, attention_mask=attention_mask | |
| )["last_hidden_state"] | |
| embeddings = self.proj_out(embeddings.float()) | |
| embeddings = embeddings * attention_mask.unsqueeze(-1).float() | |
| return embeddings, attention_mask | |
| class PhonemeConditioner(Conditioner): | |
| """ | |
| A conditioner that turns text into phonemes and embeds them using a lookup table | |
| Only works for English text | |
| Args: | |
| output_dim: the dimension of the output embeddings | |
| max_length: the maximum number of phonemes to embed | |
| project_out: whether to add another linear projection to the output embeddings | |
| """ | |
| def __init__( | |
| self, | |
| output_dim: int, | |
| max_length: int = 1024, | |
| project_out: bool = False, | |
| ): | |
| super().__init__(output_dim, output_dim, project_out=project_out) | |
| from g2p_en import G2p | |
| self.max_length = max_length | |
| self.g2p = G2p() | |
| # Reserving 0 for padding, 1 for ignored | |
| self.phoneme_embedder = nn.Embedding(len(self.g2p.phonemes) + 2, output_dim) | |
| def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
| self.phoneme_embedder.to(device) | |
| self.proj_out.to(device) | |
| batch_phonemes = [self.g2p(text) for text in texts] # shape [batch_size, length] | |
| phoneme_ignore = [" ", *string.punctuation] | |
| # Remove ignored phonemes and cut to max length | |
| batch_phonemes = [[p if p not in phoneme_ignore else "_" for p in phonemes] for phonemes in batch_phonemes] | |
| # Convert to ids | |
| phoneme_ids = [[self.g2p.p2idx[p] + 2 if p in self.g2p.p2idx else 1 for p in phonemes] for phonemes in batch_phonemes] | |
| #Pad to match longest and make a mask tensor for the padding | |
| longest = max([len(ids) for ids in phoneme_ids]) | |
| phoneme_ids = [ids + [0] * (longest - len(ids)) for ids in phoneme_ids] | |
| phoneme_ids = torch.tensor(phoneme_ids).to(device) | |
| # Convert to embeddings | |
| phoneme_embeds = self.phoneme_embedder(phoneme_ids) | |
| phoneme_embeds = self.proj_out(phoneme_embeds) | |
| return phoneme_embeds, torch.ones(phoneme_embeds.shape[0], phoneme_embeds.shape[1]).to(device) | |
| class TokenizerLUTConditioner(Conditioner): | |
| """ | |
| A conditioner that embeds text using a lookup table on a pretrained tokenizer's vocabulary | |
| Args: | |
| tokenizer_name: the name of the tokenizer from the Hugging Face transformers library | |
| output_dim: the dimension of the output embeddings | |
| max_length: the maximum length of the text to embed | |
| project_out: whether to add another linear projection to the output embeddings | |
| """ | |
| def __init__( | |
| self, | |
| tokenizer_name: str, # Name of a tokenizer from the Hugging Face transformers library | |
| output_dim: int, | |
| max_length: int = 1024, | |
| project_out: bool = False, | |
| ): | |
| super().__init__(output_dim, output_dim, project_out=project_out) | |
| from transformers import AutoTokenizer | |
| # Suppress logging from transformers | |
| previous_level = logging.root.manager.disable | |
| logging.disable(logging.ERROR) | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter("ignore") | |
| try: | |
| self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
| finally: | |
| logging.disable(previous_level) | |
| self.max_length = max_length | |
| self.token_embedder = nn.Embedding(len(self.tokenizer), output_dim) | |
| def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
| self.proj_out.to(device) | |
| encoded = self.tokenizer( | |
| texts, | |
| truncation=True, | |
| max_length=self.max_length, | |
| padding="max_length", | |
| return_tensors="pt", | |
| ) | |
| input_ids = encoded["input_ids"].to(device) | |
| attention_mask = encoded["attention_mask"].to(device).to(torch.bool) | |
| embeddings = self.token_embedder(input_ids) | |
| embeddings = self.proj_out(embeddings) | |
| embeddings = embeddings * attention_mask.unsqueeze(-1).float() | |
| return embeddings, attention_mask | |
| class PretransformConditioner(Conditioner): | |
| """ | |
| A conditioner that uses a pretransform's encoder for conditioning | |
| Args: | |
| pretransform: an instantiated pretransform to use for conditioning | |
| output_dim: the dimension of the output embeddings | |
| """ | |
| def __init__(self, pretransform: Pretransform, output_dim: int): | |
| super().__init__(pretransform.encoded_channels, output_dim) | |
| self.pretransform = pretransform | |
| def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
| self.pretransform.to(device) | |
| self.proj_out.to(device) | |
| if isinstance(audio, list) or isinstance(audio, tuple): | |
| audio = torch.cat(audio, dim=0) | |
| # Convert audio to pretransform input channels | |
| audio = set_audio_channels(audio, self.pretransform.io_channels) | |
| latents = self.pretransform.encode(audio) | |
| latents = self.proj_out(latents) | |
| return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)] | |
| class AudioAutoencoderConditioner(Conditioner): | |
| """ | |
| A conditioner that uses a pretransform's encoder for conditioning | |
| Args: | |
| pretransform: an instantiated pretransform to use for conditioning | |
| output_dim: the dimension of the output embeddings | |
| """ | |
| def __init__(self, pretransform: Pretransform, output_dim: int): | |
| super().__init__(pretransform.encoded_channels, output_dim) | |
| self.pretransform = pretransform | |
| self.empty_audio_feat = nn.Parameter(torch.zeros(1, 215, self.proj_out.out_features), requires_grad=True) | |
| nn.init.constant_(self.empty_audio_feat, 0) | |
| def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]: | |
| self.pretransform.to(device) | |
| self.proj_out.to(device) | |
| if isinstance(audio, list) or isinstance(audio, tuple): | |
| original_audios = torch.cat(audio, dim=0).to(device) | |
| is_zero = torch.all(original_audios == 0, dim=(1,2)) | |
| audio = original_audios | |
| # Convert audio to pretransform input channels | |
| audio = set_audio_channels(audio, self.pretransform.io_channels) | |
| latents = self.pretransform.encode(audio) | |
| latents = latents.permute(0, 2, 1) | |
| latents = self.proj_out(latents) | |
| empty_audio_feat = self.empty_audio_feat.expand(latents.shape[0], -1, -1) | |
| is_zero_expanded = is_zero.view(latents.shape[0], 1, 1) | |
| latents = torch.where(is_zero_expanded, empty_audio_feat, latents) | |
| return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)] | |
| class MultiConditioner(nn.Module): | |
| """ | |
| A module that applies multiple conditioners to an input dictionary based on the keys | |
| Args: | |
| conditioners: a dictionary of conditioners with keys corresponding to the keys of the conditioning input dictionary (e.g. "prompt") | |
| default_keys: a dictionary of default keys to use if the key is not in the input dictionary (e.g. {"prompt_t5": "prompt"}) | |
| """ | |
| def __init__(self, conditioners: tp.Dict[str, Conditioner], default_keys: tp.Dict[str, str] = {}): | |
| super().__init__() | |
| self.conditioners = nn.ModuleDict(conditioners) | |
| self.default_keys = default_keys | |
| def forward(self, batch_metadata: tp.List[tp.Dict[str, tp.Any]], device: tp.Union[torch.device, str]) -> tp.Dict[str, tp.Any]: | |
| output = {} | |
| for key, conditioner in self.conditioners.items(): | |
| condition_key = key | |
| conditioner_inputs = [] | |
| for x in batch_metadata: | |
| if condition_key not in x: | |
| if condition_key in self.default_keys: | |
| condition_key = self.default_keys[condition_key] | |
| else: | |
| raise ValueError(f"Conditioner key {condition_key} not found in batch metadata") | |
| if isinstance(x[condition_key], list) or isinstance(x[condition_key], tuple) and len(x[condition_key]) == 1: | |
| conditioner_input = x[condition_key][0] | |
| else: | |
| conditioner_input = x[condition_key] | |
| conditioner_inputs.append(conditioner_input) | |
| output[key] = conditioner(conditioner_inputs, device) | |
| return output | |
| def create_multi_conditioner_from_conditioning_config(config: tp.Dict[str, tp.Any]) -> MultiConditioner: | |
| """ | |
| Create a MultiConditioner from a conditioning config dictionary | |
| Args: | |
| config: the conditioning config dictionary | |
| device: the device to put the conditioners on | |
| """ | |
| conditioners = {} | |
| cond_dim = config["cond_dim"] | |
| default_keys = config.get("default_keys", {}) | |
| for conditioner_info in config["configs"]: | |
| id = conditioner_info["id"] | |
| conditioner_type = conditioner_info["type"] | |
| conditioner_config = {"output_dim": cond_dim} | |
| conditioner_config.update(conditioner_info["config"]) | |
| if conditioner_type == "t5": | |
| conditioners[id] = T5Conditioner(**conditioner_config) | |
| elif conditioner_type == "clip": | |
| conditioners[id] = CLIPConditioner(**conditioner_config) | |
| elif conditioner_type == "clap_text": | |
| conditioners[id] = CLAPTextConditioner(**conditioner_config) | |
| elif conditioner_type == "clap_audio": | |
| conditioners[id] = CLAPAudioConditioner(**conditioner_config) | |
| elif conditioner_type == "int": | |
| conditioners[id] = IntConditioner(**conditioner_config) | |
| elif conditioner_type == "number": | |
| conditioners[id] = NumberConditioner(**conditioner_config) | |
| elif conditioner_type == "phoneme": | |
| conditioners[id] = PhonemeConditioner(**conditioner_config) | |
| elif conditioner_type == "lut": | |
| conditioners[id] = TokenizerLUTConditioner(**conditioner_config) | |
| elif conditioner_type == "pretransform": | |
| sample_rate = conditioner_config.pop("sample_rate", None) | |
| assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners" | |
| pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate) | |
| if conditioner_config.get("pretransform_ckpt_path", None) is not None: | |
| pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path"))) | |
| conditioners[id] = PretransformConditioner(pretransform, **conditioner_config) | |
| elif conditioner_type == "audio_autoencoder": | |
| sample_rate = conditioner_config.pop("sample_rate", None) | |
| assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners" | |
| pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate) | |
| if conditioner_config.get("pretransform_ckpt_path", None) is not None: | |
| pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path"))) | |
| conditioners[id] = AudioAutoencoderConditioner(pretransform, **conditioner_config) | |
| else: | |
| raise ValueError(f"Unknown conditioner type: {conditioner_type}") | |
| return MultiConditioner(conditioners, default_keys=default_keys) |