Spaces:
Running
Running
| % Define the file path to your text file | |
| file_path = 'D:\Projects\Diffusion-Models-pytorch\logs\results\images\20231028_1516_Infer_Unet\saved_logs\infer_all_log.txt'; | |
| % Read the entire file | |
| file_contents = fileread(file_path); | |
| % Define regular expressions to match the lines with "val set" and the metrics | |
| pattern_val_set = 'val set \d+,\s+SSIM: metatensor\(([\d.]+)\),\s+MAE: metatensor\(([\d.]+)\),\s+PSNR: metatensor\(([\d.]+)\)'; | |
| pattern_overall_metrics = 'over all metrices,\s+SSIM: metatensor\(([\d.]+)\),\s+MAE: metatensor\(([\d.]+)\),\s+PSNR: metatensor\(([\d.]+)\)'; | |
| % Use regular expressions to extract values from the file | |
| val_set_matches = regexp(file_contents, pattern_val_set, 'tokens'); | |
| overall_metrics_matches = regexp(file_contents, pattern_overall_metrics, 'tokens'); | |
| % Initialize arrays to store the extracted values | |
| SSIM_val_set = []; | |
| MAE_val_set = []; | |
| PSNR_val_set = []; | |
| % Loop through val set matches and extract the values | |
| for i = 1:numel(val_set_matches) | |
| values = val_set_matches{i}; | |
| SSIM_val_set(i) = str2double(values{1}); | |
| MAE_val_set(i) = str2double(values{2}); | |
| PSNR_val_set(i) = str2double(values{3}); | |
| end | |
| % Display the extracted values for "val set" lines | |
| % disp('SSIM (val set):'); | |
| % disp(SSIM_val_set); | |
| % | |
| % disp('MAE (val set):'); | |
| % disp(MAE_val_set); | |
| % | |
| % disp('PSNR (val set):'); | |
| % disp(PSNR_val_set); | |
| mean_SSIM = mean(SSIM_val_set); | |
| mean_MAE = mean(MAE_val_set); | |
| mean_PSNR = mean(PSNR_val_set); | |
| std_SSIM = std(SSIM_val_set); | |
| std_MAE = std(MAE_val_set); | |
| std_PSNR = std(PSNR_val_set); | |