Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
model_name = "aifeifei798/llama3-8B-DarkIdol-2.0-Uncensored" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True) | |
def generate_text(prompt, max_length=100, temperature=0.7): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_length=max_length, | |
temperature=temperature, | |
do_sample=True, | |
top_p=0.9, | |
top_k=50, | |
num_return_sequences=1, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create a Gradio interface | |
gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.inputs.Textbox(label="Input Text"), | |
gr.inputs.Slider(label="Max Length", minimum=1, maximum=500, value=100, step=1), | |
gr.inputs.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1), | |
], | |
outputs=gr.outputs.Textbox(label="Generated Text"), | |
title="LLAMA 3 8B Model", | |
description="Generate text using the LLAMA 3 8B model.", | |
).launch() |