Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the uncensoredgpt model and tokenizer | |
model_name = "gpt2" # Replace with the actual uncensoredgpt model name if available | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def generate_text(prompt, max_length=100): | |
inputs = tokenizer.encode(prompt, return_tensors="pt") | |
outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."), | |
outputs="text", | |
title="UncensoredGPT", | |
description="A simple interface for the uncensoredgpt model." | |
) | |
# Launch the interface | |
iface.launch() |