Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os, subprocess, torchaudio | |
import torch | |
from PIL import Image | |
import gradio as gr | |
import soundfile | |
from gtts import gTTS | |
import tempfile | |
from pydub.generators import Sine | |
from pydub import AudioSegment | |
import dlib | |
import cv2 | |
import imageio | |
import os | |
import ffmpeg | |
from io import BytesIO | |
import requests | |
import sys | |
python_path = sys.executable | |
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub | |
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface | |
block = gr.Blocks() | |
def compute_aspect_preserved_bbox(bbox, increase_area, h, w): | |
left, top, right, bot = bbox | |
width = right - left | |
height = bot - top | |
width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width)) | |
height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height)) | |
left_t = int(left - width_increase * width) | |
top_t = int(top - height_increase * height) | |
right_t = int(right + width_increase * width) | |
bot_t = int(bot + height_increase * height) | |
left_oob = -min(0, left_t) | |
right_oob = right - min(right_t, w) | |
top_oob = -min(0, top_t) | |
bot_oob = bot - min(bot_t, h) | |
if max(left_oob, right_oob, top_oob, bot_oob) > 0: | |
max_w = max(left_oob, right_oob) | |
max_h = max(top_oob, bot_oob) | |
if max_w > max_h: | |
return left_t + max_w, top_t + max_w, right_t - max_w, bot_t - max_w | |
else: | |
return left_t + max_h, top_t + max_h, right_t - max_h, bot_t - max_h | |
else: | |
return (left_t, top_t, right_t, bot_t) | |
def crop_src_image(src_img, detector=None): | |
if detector is None: | |
detector = dlib.get_frontal_face_detector() | |
save_img='/content/image_pre.png' | |
img = cv2.imread(src_img) | |
faces = detector(img, 0) | |
h, width, _ = img.shape | |
if len(faces) > 0: | |
bbox = [faces[0].left(), faces[0].top(),faces[0].right(), faces[0].bottom()] | |
l = bbox[3]-bbox[1] | |
bbox[1]= bbox[1]-l*0.1 | |
bbox[3]= bbox[3]-l*0.1 | |
bbox[1] = max(0,bbox[1]) | |
bbox[3] = min(h,bbox[3]) | |
bbox = compute_aspect_preserved_bbox(tuple(bbox), 0.5, img.shape[0], img.shape[1]) | |
img = img[bbox[1] :bbox[3] , bbox[0]:bbox[2]] | |
img = cv2.resize(img, (256, 256)) | |
cv2.imwrite(save_img,img) | |
else: | |
img = cv2.resize(img,(256,256)) | |
cv2.imwrite(save_img, img) | |
return save_img | |
def pad_image(image): | |
w, h = image.size | |
if w == h: | |
return image | |
elif w > h: | |
new_image = Image.new(image.mode, (w, w), (0, 0, 0)) | |
new_image.paste(image, (0, (w - h) // 2)) | |
return new_image | |
else: | |
new_image = Image.new(image.mode, (h, h), (0, 0, 0)) | |
new_image.paste(image, ((h - w) // 2, 0)) | |
return new_image | |
def calculate(image_in, audio_in): | |
waveform, sample_rate = torchaudio.load(audio_in) | |
waveform = torch.mean(waveform, dim=0, keepdim=True) | |
torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16) | |
image_in = image_in.replace("results/", "") | |
print("****"*100) | |
print(f" *#*#*# original image => {image_in} *#*#*# ") | |
if os.path.exists(image_in): | |
print(f"image exists => {image_in}") | |
image = Image.open(image_in) | |
else: | |
print("image not exists reading web image") | |
image_url = "http://labelme.csail.mit.edu/Release3.0/Images/users/DNguyen91/face/m_unsexy_gr.jpg" | |
response = requests.get(image_url) | |
image = Image.open(BytesIO(response.content)) | |
print("****"*100) | |
image = pad_image(image) | |
# os.system(f"rm -rf /content/image.png") | |
image.save("image.png") | |
pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True) | |
jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True) | |
with open("test.json", "w") as f: | |
f.write(jq_run.stdout.decode('utf-8').strip()) | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# os.system(f"rm -rf /content/image_audio.mp4") | |
os.system(f"cd /content/one-shot-talking-face && {python_path} -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train") | |
return "/content/train/image_audio.mp4" | |
def merge_frames(): | |
path = '/content/video_results/restored_imgs' | |
if not os.path.exists(path): | |
os.makedirs(path) | |
image_folder = os.fsencode(path) | |
print(image_folder) | |
filenames = [] | |
for file in os.listdir(image_folder): | |
filename = os.fsdecode(file) | |
if filename.endswith( ('.jpg', '.png', '.gif') ): | |
filenames.append(filename) | |
filenames.sort() # this iteration technique has no built in order, so sort the frames | |
print(filenames) | |
images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/"+filename), filenames)) | |
# os.system(f"rm -rf /content/video_output.mp4") | |
imageio.mimsave('/content/video_output.mp4', images, fps=25.0) # modify the frame duration as needed | |
return "/content/video_output.mp4" | |
def audio_video(): | |
input_video = ffmpeg.input('/content/video_output.mp4') | |
input_audio = ffmpeg.input('/content/audio.wav') | |
os.system(f"rm -rf /content/final_output.mp4") | |
ffmpeg.concat(input_video, input_audio, v=1, a=1).output('/content/final_output.mp4').run() | |
return "/content/final_output.mp4" | |
def one_shot_talking(image_in,audio_in): | |
# Pre-processing of image | |
crop_img=crop_src_image(image_in) | |
if os.path.exists("/content/results/restored_imgs/image_pre.png"): | |
os.system(f"rm -rf /content/results/restored_imgs/image_pre.png") | |
if not os.path.exists( "/content/results" ): | |
os.makedirs("/content/results") | |
#Improve quality of input image | |
os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan") | |
# time.sleep(60) | |
image_in_one_shot='/content/results/image_pre.png' | |
#One Shot Talking Face algorithm | |
calculate(image_in_one_shot,audio_in) | |
#Video Quality Improvement | |
os.system(f"rm -rf /content/extracted_frames/image_audio_frames") | |
#1. Extract the frames from the video file using PyVideoFramesExtractor | |
os.system(f"{python_path} /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_audio.mp4") | |
#2. Improve image quality using GFPGAN on each frames | |
# os.system(f"rm -rf /content/extracted_frames/image_audio_frames") | |
os.system(f"rm -rf /content/video_results/") | |
os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_audio_frames -o /content/video_results --bg_upsampler realesrgan") | |
#3. Merge all the frames to a one video using imageio | |
merge_frames() | |
return audio_video() | |
def one_shot(image_in,input_text,gender): | |
if gender == "Female": | |
tts = gTTS(input_text) | |
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f: | |
tts.write_to_fp(f) | |
f.seek(0) | |
sound = AudioSegment.from_file(f.name, format="mp3") | |
os.system(f"rm -rf /content/audio.wav") | |
sound.export("/content/audio.wav", format="wav") | |
audio_in="/content/audio.wav" | |
return one_shot_talking(image_in,audio_in) | |
elif gender == 'Male': | |
models, cfg, task = load_model_ensemble_and_task_from_hf_hub( | |
"Voicemod/fastspeech2-en-male1", | |
arg_overrides={"vocoder": "hifigan", "fp16": False} | |
) | |
model = models[0] | |
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg) | |
generator = task.build_generator([model], cfg) | |
# next(model.parameters()).device | |
sample = TTSHubInterface.get_model_input(task, input_text) | |
sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"] | |
sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"] | |
sample["speaker"] = sample["speaker"] | |
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample) | |
# soundfile.write("/content/audio_before.wav", wav, rate) | |
os.system(f"rm -rf /content/audio_before.wav") | |
soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate) | |
os.system(f"rm -rf /content/audio.wav") | |
cmd='ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav' | |
os.system(cmd) | |
audio_in="/content/audio.wav" | |
return one_shot_talking(image_in,audio_in) | |
def run(): | |
with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo: | |
gr.Markdown("<h1 style='text-align: center;'>"+ "One Shot Talking Face from Text" + "</h1><br/><br/>") | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(equal_height=True): | |
image_in = gr.Image(show_label=True, type="filepath",label="Input Image") | |
input_text = gr.Textbox(show_label=True,label="Input Text") | |
gender = gr.Radio(["Female","Male"],value="Female",label="Gender") | |
video_out = gr.Video(show_label=True,label="Output") | |
with gr.Row().style(equal_height=True): | |
btn = gr.Button("Generate") | |
# gr.Markdown( | |
# """ | |
# <p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at | |
# <a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a> | |
# <p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p> | |
# """) | |
btn.click(one_shot, inputs=[image_in,input_text,gender], outputs=[video_out]) | |
demo.queue() | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |
if __name__ == "__main__": | |
run() |