Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline | |
def analyze_financial_news(): | |
access = "hf_" | |
token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa" | |
# Load the text classification model and finetuned model pipeline | |
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token) | |
sentiment_analysis = pipeline("text-classification", model="ZephyruSalsify/FinNews_SentimentAnalysis_v3") | |
st.set_page_config(page_title="Energy/Oil-Related Financial News Sentiment Analysis", page_icon="♕") | |
# Streamlit application layout | |
st.title("Energy/Oil-Related Financial News Sentiment Analysis") | |
st.write("Conduct Sentiment Analysis for Energy/Oil-Related Financial News to Find Out the Trend In Energy/Oil Industry and Make Wise Decisions!") | |
st.image("./Fin.jpg", use_column_width=True) | |
# Text input for user to enter the text | |
text = st.text_area("Enter the Financial News Content", "") | |
analyze_clicked = st.button("Analyze") | |
if analyze_clicked: | |
# Perform text classification on the input text | |
results = classification(text)[0] | |
# Check if the classification is "Energy | Oil" | |
if results["label"] == "Energy | Oil": | |
# If the news is related to Energy | Oil, perform sentiment analysis | |
sentiment_results = sentiment_analysis(text)[0] | |
# Display the sentiment analysis result | |
st.write("This financial news belongs to the 'Energy | Oil' category.") | |
st.write("Sentiment:", sentiment_results["label"]) | |
st.write("Sentiment Score:", sentiment_results["score"]) | |
else: | |
st.write("This financial news does not belong to the 'Energy | Oil' category. Please enter a relevant news article.") | |
def main(): | |
analyze_financial_news() | |
if __name__ == "__main__": | |
main() | |