Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from diffusers import DiffusionPipeline, StableDiffusionXLBaseModel, StableDiffusionTrainer | |
from transformers import CLIPTextModel, CLIPTokenizer, TrainingArguments | |
from datasets import load_dataset | |
from huggingface_hub import HfApi, HfFolder, Repository | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
return image | |
def get_latest_version(repo_id): | |
api = HfApi() | |
repo_info = api.repo_info(repo_id) | |
versions = [tag.name for tag in repo_info.tags] | |
if not versions: | |
return "v_0.0" | |
latest_version = sorted(versions)[-1] | |
return latest_version | |
def increment_version(version): | |
major, minor = map(int, version.split('_')[1:]) | |
minor += 1 | |
return f"v_{major}.{minor}" | |
def train_model(train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate): | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
base_model = StableDiffusionXLBaseModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
dataset = load_dataset('imagefolder', data_dir=train_data_path) | |
training_args = TrainingArguments( | |
output_dir=output_dir, | |
num_train_epochs=num_train_epochs, | |
per_device_train_batch_size=per_device_train_batch_size, | |
learning_rate=learning_rate, | |
logging_dir="./logs", | |
logging_steps=10, | |
) | |
trainer = StableDiffusionTrainer( | |
model=base_model, | |
args=training_args, | |
train_dataset=dataset['train'], | |
tokenizer=tokenizer, | |
) | |
trainer.train() | |
base_model.save_pretrained(output_dir) | |
# Publish the model | |
repo_id = "ZennyKenny/stable-diffusion-xl-base-1.0_NatalieDiffusion" | |
latest_version = get_latest_version(repo_id) | |
new_version = increment_version(latest_version) | |
api = HfApi() | |
token = HfFolder.get_token() | |
repo = Repository(output_dir, clone_from=repo_id, token=token) | |
repo.git_tag(new_version) | |
repo.push_tag(new_version) | |
return f"Training complete. Model saved to {output_dir} and published as version {new_version}." | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Text-to-Image Gradio Template | |
Currently running on {power_device}. | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=12, | |
step=1, | |
value=2, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt] | |
) | |
# Add new section for training the model | |
with gr.Accordion("Training Settings", open=False): | |
train_data_path = gr.Text( | |
label="Training Data Path", | |
placeholder="Enter the path to your training data", | |
) | |
output_dir = gr.Text( | |
label="Output Directory", | |
placeholder="Enter the output directory for the trained model", | |
) | |
num_train_epochs = gr.Slider( | |
label="Number of Training Epochs", | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=3, | |
) | |
per_device_train_batch_size = gr.Slider( | |
label="Batch Size per Device", | |
minimum=1, | |
maximum=16, | |
step=1, | |
value=4, | |
) | |
learning_rate = gr.Slider( | |
label="Learning Rate", | |
minimum=1e-5, | |
maximum=1e-3, | |
step=1e-5, | |
value=5e-5, | |
) | |
train_button = gr.Button("Train Model") | |
train_result = gr.Text(label="Training Result", show_label=False) | |
train_button.click( | |
fn=train_model, | |
inputs=[train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate], | |
outputs=[train_result], | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result] | |
) | |
demo.queue().launch() | |