ZennyKenny's picture
training-script
8f76168
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline, StableDiffusionXLBaseModel, StableDiffusionTrainer
from transformers import CLIPTextModel, CLIPTokenizer, TrainingArguments
from datasets import load_dataset
from huggingface_hub import HfApi, HfFolder, Repository
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image
def get_latest_version(repo_id):
api = HfApi()
repo_info = api.repo_info(repo_id)
versions = [tag.name for tag in repo_info.tags]
if not versions:
return "v_0.0"
latest_version = sorted(versions)[-1]
return latest_version
def increment_version(version):
major, minor = map(int, version.split('_')[1:])
minor += 1
return f"v_{major}.{minor}"
def train_model(train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate):
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
base_model = StableDiffusionXLBaseModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
dataset = load_dataset('imagefolder', data_dir=train_data_path)
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=per_device_train_batch_size,
learning_rate=learning_rate,
logging_dir="./logs",
logging_steps=10,
)
trainer = StableDiffusionTrainer(
model=base_model,
args=training_args,
train_dataset=dataset['train'],
tokenizer=tokenizer,
)
trainer.train()
base_model.save_pretrained(output_dir)
# Publish the model
repo_id = "ZennyKenny/stable-diffusion-xl-base-1.0_NatalieDiffusion"
latest_version = get_latest_version(repo_id)
new_version = increment_version(latest_version)
api = HfApi()
token = HfFolder.get_token()
repo = Repository(output_dir, clone_from=repo_id, token=token)
repo.git_tag(new_version)
repo.push_tag(new_version)
return f"Training complete. Model saved to {output_dir} and published as version {new_version}."
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
# Add new section for training the model
with gr.Accordion("Training Settings", open=False):
train_data_path = gr.Text(
label="Training Data Path",
placeholder="Enter the path to your training data",
)
output_dir = gr.Text(
label="Output Directory",
placeholder="Enter the output directory for the trained model",
)
num_train_epochs = gr.Slider(
label="Number of Training Epochs",
minimum=1,
maximum=10,
step=1,
value=3,
)
per_device_train_batch_size = gr.Slider(
label="Batch Size per Device",
minimum=1,
maximum=16,
step=1,
value=4,
)
learning_rate = gr.Slider(
label="Learning Rate",
minimum=1e-5,
maximum=1e-3,
step=1e-5,
value=5e-5,
)
train_button = gr.Button("Train Model")
train_result = gr.Text(label="Training Result", show_label=False)
train_button.click(
fn=train_model,
inputs=[train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate],
outputs=[train_result],
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()