Spaces:
Runtime error
Runtime error
Zengyf-CVer
commited on
Commit
•
c9aac43
1
Parent(s):
e2b482e
app update
Browse files- .gitignore +54 -0
- README.md +2 -2
- __init__.py +2 -0
- app.py +834 -0
- cls_name/cls_name.csv +80 -0
- cls_name/cls_name.yaml +7 -0
- cls_name/cls_name_ar.yaml +9 -0
- cls_name/cls_name_en.yaml +9 -0
- cls_name/cls_name_es.yaml +9 -0
- cls_name/cls_name_ko.yaml +9 -0
- cls_name/cls_name_ru.yaml +9 -0
- cls_name/cls_name_zh.yaml +7 -0
- img_example/Millenial-at-work.jpg +0 -0
- img_example/bus.jpg +0 -0
- img_example/giraffe.jpg +0 -0
- img_example/read.txt +0 -0
- img_example/zidane.jpg +0 -0
- model_config/model_name_p5_all.csv +5 -0
- model_config/model_name_p5_all.yaml +1 -0
- model_config/model_name_p5_n.csv +1 -0
- model_config/model_name_p5_n.yaml +1 -0
- model_config/model_name_p5_p6_all.yaml +1 -0
- model_config/model_name_p6_all.csv +5 -0
- model_config/model_name_p6_all.yaml +1 -0
- model_download/yolov5_model_p5_all.sh +8 -0
- model_download/yolov5_model_p5_n.sh +4 -0
- model_download/yolov5_model_p6_all.sh +8 -0
- requirements.txt +45 -0
- util/fonts_opt.py +69 -0
- util/pdf_opt.py +78 -0
.gitignore
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 图片格式
|
2 |
+
*.jpg
|
3 |
+
*.jpeg
|
4 |
+
*.png
|
5 |
+
*.svg
|
6 |
+
*.gif
|
7 |
+
|
8 |
+
# 视频格式
|
9 |
+
*.mp4
|
10 |
+
*.avi
|
11 |
+
.ipynb_checkpoints
|
12 |
+
*/__pycache__
|
13 |
+
|
14 |
+
# 日志格式
|
15 |
+
*.log
|
16 |
+
*.datas
|
17 |
+
*.txt
|
18 |
+
|
19 |
+
# 生成文件
|
20 |
+
*.pdf
|
21 |
+
*.xlsx
|
22 |
+
*.csv
|
23 |
+
|
24 |
+
# 参数文件
|
25 |
+
*.yaml
|
26 |
+
*.json
|
27 |
+
|
28 |
+
# 压缩文件格式
|
29 |
+
*.zip
|
30 |
+
*.tar
|
31 |
+
*.tar.gz
|
32 |
+
*.rar
|
33 |
+
|
34 |
+
# 字体格式
|
35 |
+
*.ttc
|
36 |
+
*.ttf
|
37 |
+
*.otf
|
38 |
+
|
39 |
+
# 模型文件
|
40 |
+
*.pt
|
41 |
+
*.db
|
42 |
+
|
43 |
+
test.py
|
44 |
+
test*.py
|
45 |
+
|
46 |
+
/flagged
|
47 |
+
/run
|
48 |
+
!requirements.txt
|
49 |
+
!cls_name/*
|
50 |
+
!model_config/*
|
51 |
+
!img_example/*
|
52 |
+
!packages.txt
|
53 |
+
|
54 |
+
app copy.py
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Gradio YOLOv5 Det V5
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.1.1
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Gradio YOLOv5 Det V5
|
3 |
+
emoji: 🚀
|
4 |
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.1.1
|
8 |
app_file: app.py
|
__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__author__ = "曾逸夫(Zeng Yifu)"
|
2 |
+
__email__ = "zyfiy1314@163.com"
|
app.py
ADDED
@@ -0,0 +1,834 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gradio YOLOv5 Det v0.5
|
2 |
+
# author: Zeng Yifu(曾逸夫)
|
3 |
+
# creation time: 2022-07-22
|
4 |
+
# email: zyfiy1314@163.com
|
5 |
+
# project homepage: https://gitee.com/CV_Lab/gradio_yolov5_det
|
6 |
+
|
7 |
+
import os
|
8 |
+
import argparse
|
9 |
+
import csv
|
10 |
+
import sys
|
11 |
+
|
12 |
+
csv.field_size_limit(sys.maxsize)
|
13 |
+
|
14 |
+
import gc
|
15 |
+
import json
|
16 |
+
from collections import Counter
|
17 |
+
from pathlib import Path
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
import gradio as gr
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
import numpy as np
|
23 |
+
import pandas as pd
|
24 |
+
import plotly.express as px
|
25 |
+
from matplotlib import font_manager
|
26 |
+
from matplotlib.ticker import MaxNLocator
|
27 |
+
|
28 |
+
ROOT_PATH = sys.path[0] # 项目根目录
|
29 |
+
|
30 |
+
# --------------------- 字体库 ---------------------
|
31 |
+
SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径
|
32 |
+
TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径
|
33 |
+
# 宋体
|
34 |
+
SimSun = font_manager.FontProperties(fname=SimSun_path, size=12)
|
35 |
+
# 新罗马字体
|
36 |
+
TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12)
|
37 |
+
|
38 |
+
import torch
|
39 |
+
import yaml
|
40 |
+
from PIL import Image, ImageDraw, ImageFont
|
41 |
+
|
42 |
+
from util.fonts_opt import is_fonts
|
43 |
+
from util.pdf_opt import pdf_generate
|
44 |
+
|
45 |
+
ROOT_PATH = sys.path[0] # 根目录
|
46 |
+
|
47 |
+
# yolov5路径
|
48 |
+
yolov5_path = "ultralytics/yolov5"
|
49 |
+
|
50 |
+
# 本地模型路径
|
51 |
+
local_model_path = f"{ROOT_PATH}/models"
|
52 |
+
|
53 |
+
# Gradio YOLOv5 Det版本
|
54 |
+
GYD_VERSION = "Gradio YOLOv5 Det v0.5"
|
55 |
+
|
56 |
+
# 模型名称临时变量
|
57 |
+
model_name_tmp = ""
|
58 |
+
|
59 |
+
# 设备临时变量
|
60 |
+
device_tmp = ""
|
61 |
+
|
62 |
+
# 文件后缀
|
63 |
+
suffix_list = [".csv", ".yaml"]
|
64 |
+
|
65 |
+
# 字体大小
|
66 |
+
FONTSIZE = 25
|
67 |
+
|
68 |
+
# 目标尺寸
|
69 |
+
obj_style = ["小目标", "中目标", "大目标"]
|
70 |
+
|
71 |
+
|
72 |
+
def parse_args(known=False):
|
73 |
+
parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.5")
|
74 |
+
parser.add_argument("--source", "-src", default="upload", type=str, help="image input source")
|
75 |
+
parser.add_argument("--source_video", "-src_v", default="upload", type=str, help="video input source")
|
76 |
+
parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool")
|
77 |
+
parser.add_argument("--model_name", "-mn", default="yolov5s", type=str, help="model name")
|
78 |
+
parser.add_argument(
|
79 |
+
"--model_cfg",
|
80 |
+
"-mc",
|
81 |
+
default="./model_config/model_name_p5_p6_all.yaml",
|
82 |
+
type=str,
|
83 |
+
help="model config",
|
84 |
+
)
|
85 |
+
parser.add_argument(
|
86 |
+
"--cls_name",
|
87 |
+
"-cls",
|
88 |
+
default="./cls_name/cls_name_zh.yaml",
|
89 |
+
type=str,
|
90 |
+
help="cls name",
|
91 |
+
)
|
92 |
+
parser.add_argument(
|
93 |
+
"--nms_conf",
|
94 |
+
"-conf",
|
95 |
+
default=0.5,
|
96 |
+
type=float,
|
97 |
+
help="model NMS confidence threshold",
|
98 |
+
)
|
99 |
+
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
|
100 |
+
parser.add_argument(
|
101 |
+
"--device",
|
102 |
+
"-dev",
|
103 |
+
default="cuda:0",
|
104 |
+
type=str,
|
105 |
+
help="cuda or cpu",
|
106 |
+
)
|
107 |
+
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
|
108 |
+
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
|
109 |
+
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
|
110 |
+
parser.add_argument(
|
111 |
+
"--is_login",
|
112 |
+
"-isl",
|
113 |
+
action="store_true",
|
114 |
+
default=False,
|
115 |
+
help="is login",
|
116 |
+
)
|
117 |
+
parser.add_argument('--usr_pwd',
|
118 |
+
"-up",
|
119 |
+
nargs='+',
|
120 |
+
type=str,
|
121 |
+
default=["admin", "admin"],
|
122 |
+
help="user & password for login")
|
123 |
+
parser.add_argument(
|
124 |
+
"--is_share",
|
125 |
+
"-is",
|
126 |
+
action="store_true",
|
127 |
+
default=False,
|
128 |
+
help="is login",
|
129 |
+
)
|
130 |
+
|
131 |
+
args = parser.parse_known_args()[0] if known else parser.parse_args()
|
132 |
+
return args
|
133 |
+
|
134 |
+
|
135 |
+
# yaml文件解析
|
136 |
+
def yaml_parse(file_path):
|
137 |
+
return yaml.safe_load(open(file_path, encoding="utf-8").read())
|
138 |
+
|
139 |
+
|
140 |
+
# yaml csv 文件解析
|
141 |
+
def yaml_csv(file_path, file_tag):
|
142 |
+
file_suffix = Path(file_path).suffix
|
143 |
+
if file_suffix == suffix_list[0]:
|
144 |
+
# 模型名称
|
145 |
+
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
|
146 |
+
elif file_suffix == suffix_list[1]:
|
147 |
+
# 模型名称
|
148 |
+
file_names = yaml_parse(file_path).get(file_tag) # yaml版
|
149 |
+
else:
|
150 |
+
print(f"{file_path}格式不正确!程序退出!")
|
151 |
+
sys.exit()
|
152 |
+
|
153 |
+
return file_names
|
154 |
+
|
155 |
+
|
156 |
+
# 模型加载
|
157 |
+
def model_loading(model_name, device, opt=[]):
|
158 |
+
|
159 |
+
# 加载本地模型
|
160 |
+
try:
|
161 |
+
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
|
162 |
+
model = torch.hub.load(
|
163 |
+
yolov5_path,
|
164 |
+
"custom",
|
165 |
+
path=f"{local_model_path}/{model_name}",
|
166 |
+
device=device,
|
167 |
+
force_reload=[True if "refresh_yolov5" in opt else False][0],
|
168 |
+
_verbose=True,
|
169 |
+
)
|
170 |
+
except Exception as e:
|
171 |
+
print("模型加载失败!")
|
172 |
+
print(e)
|
173 |
+
return False
|
174 |
+
else:
|
175 |
+
print(f"🚀 欢��使用{GYD_VERSION},{model_name}加载成功!")
|
176 |
+
|
177 |
+
return model
|
178 |
+
|
179 |
+
|
180 |
+
# 检测信息
|
181 |
+
def export_json(results, img_size):
|
182 |
+
|
183 |
+
return [[{
|
184 |
+
"ID": i,
|
185 |
+
"CLASS": int(result[i][5]),
|
186 |
+
"CLASS_NAME": model_cls_name_cp[int(result[i][5])],
|
187 |
+
"BOUNDING_BOX": {
|
188 |
+
"XMIN": round(result[i][:4].tolist()[0], 6),
|
189 |
+
"YMIN": round(result[i][:4].tolist()[1], 6),
|
190 |
+
"XMAX": round(result[i][:4].tolist()[2], 6),
|
191 |
+
"YMAX": round(result[i][:4].tolist()[3], 6),},
|
192 |
+
"CONF": round(float(result[i][4]), 2),
|
193 |
+
"FPS": round(1000 / float(results.t[1]), 2),
|
194 |
+
"IMG_WIDTH": img_size[0],
|
195 |
+
"IMG_HEIGHT": img_size[1],} for i in range(len(result))] for result in results.xyxyn]
|
196 |
+
|
197 |
+
|
198 |
+
# 标签和边界框颜色设置
|
199 |
+
def color_set(cls_num):
|
200 |
+
color_list = []
|
201 |
+
for i in range(cls_num):
|
202 |
+
color = tuple(np.random.choice(range(256), size=3))
|
203 |
+
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
|
204 |
+
color_list.append(color)
|
205 |
+
|
206 |
+
return color_list
|
207 |
+
|
208 |
+
|
209 |
+
# 检测绘制
|
210 |
+
def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list, opt):
|
211 |
+
|
212 |
+
img_pil = ImageDraw.Draw(img)
|
213 |
+
id = 0
|
214 |
+
|
215 |
+
for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l):
|
216 |
+
|
217 |
+
img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框
|
218 |
+
countdown_msg = f"{id}-{label} {score:.2f}"
|
219 |
+
text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸
|
220 |
+
if "label" in opt:
|
221 |
+
# 标签背景
|
222 |
+
img_pil.rectangle(
|
223 |
+
(xmin, ymin, xmin + text_w, ymin + text_h),
|
224 |
+
fill=color_list[cls_index],
|
225 |
+
outline=color_list[cls_index],
|
226 |
+
)
|
227 |
+
|
228 |
+
# 标签
|
229 |
+
img_pil.multiline_text(
|
230 |
+
(xmin, ymin),
|
231 |
+
countdown_msg,
|
232 |
+
fill=(255, 255, 255),
|
233 |
+
font=textFont,
|
234 |
+
align="center",
|
235 |
+
)
|
236 |
+
|
237 |
+
id += 1
|
238 |
+
|
239 |
+
return img
|
240 |
+
|
241 |
+
|
242 |
+
# YOLOv5图片检测函数
|
243 |
+
def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_cls, opt):
|
244 |
+
|
245 |
+
global model, model_name_tmp, device_tmp
|
246 |
+
|
247 |
+
if img is None or img == "":
|
248 |
+
# 判断是否有图片存在
|
249 |
+
print("图片不存在!")
|
250 |
+
return None, None, None, None, None, None, None
|
251 |
+
|
252 |
+
det_img = img.copy()
|
253 |
+
# 目标尺寸个数
|
254 |
+
s_obj, m_obj, l_obj = 0, 0, 0
|
255 |
+
|
256 |
+
area_obj_all = [] # 目标面积
|
257 |
+
|
258 |
+
score_det_stat = [] # 置信度统计
|
259 |
+
bbox_det_stat = [] # 边界框统计
|
260 |
+
cls_det_stat = [] # 类别数量统计
|
261 |
+
cls_index_det_stat = [] # 类别索引统计
|
262 |
+
|
263 |
+
pdf_csv_xlsx = [] # 文件生成列表
|
264 |
+
|
265 |
+
if model_name_tmp != model_name:
|
266 |
+
# 模型判断,避免反复加载
|
267 |
+
model_name_tmp = model_name
|
268 |
+
print(f"正在加载模型{model_name_tmp}......")
|
269 |
+
model = model_loading(model_name_tmp, device, opt)
|
270 |
+
elif device_tmp != device:
|
271 |
+
# 设备判断,避免反复加载
|
272 |
+
device_tmp = device
|
273 |
+
print(f"正在加载模型{model_name_tmp}......")
|
274 |
+
model = model_loading(model_name_tmp, device, opt)
|
275 |
+
else:
|
276 |
+
print(f"正在加载模型{model_name_tmp}......")
|
277 |
+
model = model_loading(model_name_tmp, device, opt)
|
278 |
+
|
279 |
+
# ----------- 模型调参 -----------
|
280 |
+
model.conf = conf # NMS 置信度阈值
|
281 |
+
model.iou = iou # NMS IoU阈值
|
282 |
+
model.max_det = int(max_num) # 最大检测框数
|
283 |
+
model.classes = model_cls # 模型类别
|
284 |
+
|
285 |
+
color_list = color_set(len(model_cls_name_cp)) # 设置颜色
|
286 |
+
|
287 |
+
img_size = img.size # 帧尺寸
|
288 |
+
|
289 |
+
results = model(img, size=infer_size) # 检测
|
290 |
+
# 判断检测对象是否为空
|
291 |
+
# 参考:https://gitee.com/CV_Lab/face-labeling/blob/master/face_labeling.py
|
292 |
+
is_results_null = results.xyxyn[0].shape == torch.Size([0, 6])
|
293 |
+
|
294 |
+
if not is_results_null:
|
295 |
+
|
296 |
+
# ---------------- 目标裁剪 ----------------
|
297 |
+
crops = results.crop(save=False)
|
298 |
+
img_crops = []
|
299 |
+
for i in range(len(crops)):
|
300 |
+
img_crops.append(crops[i]["im"][..., ::-1])
|
301 |
+
|
302 |
+
# 数据表
|
303 |
+
dataframe = results.pandas().xyxy[0].round(2)
|
304 |
+
|
305 |
+
report = "./Det_Report.pdf"
|
306 |
+
det_csv = "./Det_Report.csv"
|
307 |
+
det_excel = "./Det_Report.xlsx"
|
308 |
+
|
309 |
+
if "csv" in opt:
|
310 |
+
dataframe.to_csv(det_csv, index=False)
|
311 |
+
pdf_csv_xlsx.append(det_csv)
|
312 |
+
else:
|
313 |
+
det_csv = None
|
314 |
+
|
315 |
+
if "excel" in opt:
|
316 |
+
dataframe.to_excel(det_excel, sheet_name='sheet1', index=False)
|
317 |
+
pdf_csv_xlsx.append(det_excel)
|
318 |
+
else:
|
319 |
+
det_excel = None
|
320 |
+
|
321 |
+
# ---------------- 加载字体 ----------------
|
322 |
+
yaml_index = cls_name.index(".yaml")
|
323 |
+
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
|
324 |
+
|
325 |
+
if cls_name_lang == "zh":
|
326 |
+
# 中文
|
327 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
|
328 |
+
elif cls_name_lang in ["en", "ru", "es", "ar"]:
|
329 |
+
# 英文、俄语、西班牙语、阿拉伯语
|
330 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
|
331 |
+
elif cls_name_lang == "ko":
|
332 |
+
# 韩语
|
333 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
|
334 |
+
|
335 |
+
for result in results.xyxyn:
|
336 |
+
for i in range(len(result)):
|
337 |
+
# id = int(i) # 实例ID
|
338 |
+
obj_cls_index = int(result[i][5]) # 类别索引
|
339 |
+
cls_index_det_stat.append(obj_cls_index)
|
340 |
+
|
341 |
+
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
|
342 |
+
cls_det_stat.append(obj_cls)
|
343 |
+
|
344 |
+
# ------------ 边框坐标 ------------
|
345 |
+
x0 = float(result[i][:4].tolist()[0])
|
346 |
+
y0 = float(result[i][:4].tolist()[1])
|
347 |
+
x1 = float(result[i][:4].tolist()[2])
|
348 |
+
y1 = float(result[i][:4].tolist()[3])
|
349 |
+
|
350 |
+
# ------------ 边框实际坐标 ------------
|
351 |
+
x0 = int(img_size[0] * x0)
|
352 |
+
y0 = int(img_size[1] * y0)
|
353 |
+
x1 = int(img_size[0] * x1)
|
354 |
+
y1 = int(img_size[1] * y1)
|
355 |
+
bbox_det_stat.append((x0, y0, x1, y1))
|
356 |
+
|
357 |
+
conf = float(result[i][4]) # 置信度
|
358 |
+
score_det_stat.append(conf)
|
359 |
+
|
360 |
+
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
|
361 |
+
|
362 |
+
# ---------- 加入目标尺寸 ----------
|
363 |
+
w_obj = x1 - x0
|
364 |
+
h_obj = y1 - y0
|
365 |
+
area_obj = w_obj * h_obj
|
366 |
+
area_obj_all.append(area_obj)
|
367 |
+
|
368 |
+
det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list,
|
369 |
+
opt)
|
370 |
+
# ------------ JSON生成 ------------
|
371 |
+
det_json = export_json(results, img.size)[0] # 检测信息
|
372 |
+
det_json_format = json.dumps(det_json, sort_keys=False, indent=4, separators=(",", ":"),
|
373 |
+
ensure_ascii=False) # JSON格式化
|
374 |
+
if "json" not in opt:
|
375 |
+
det_json = None
|
376 |
+
|
377 |
+
# -------------- PDF生成 --------------
|
378 |
+
if "pdf" in opt:
|
379 |
+
pdf_generate(f"{det_json_format}", report, GYD_VERSION)
|
380 |
+
pdf_csv_xlsx.append(report)
|
381 |
+
else:
|
382 |
+
report = None
|
383 |
+
|
384 |
+
# -------------- 目标尺寸计算 --------------
|
385 |
+
for i in range(len(area_obj_all)):
|
386 |
+
if (0 < area_obj_all[i] <= 32 ** 2):
|
387 |
+
s_obj = s_obj + 1
|
388 |
+
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2):
|
389 |
+
m_obj = m_obj + 1
|
390 |
+
elif (area_obj_all[i] > 96 ** 2):
|
391 |
+
l_obj = l_obj + 1
|
392 |
+
|
393 |
+
sml_obj_total = s_obj + m_obj + l_obj
|
394 |
+
objSize_dict = {}
|
395 |
+
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)}
|
396 |
+
|
397 |
+
# ------------ 类别统计 ------------
|
398 |
+
clsRatio_dict = {}
|
399 |
+
clsDet_dict = Counter(cls_det_stat)
|
400 |
+
clsDet_dict_sum = sum(clsDet_dict.values())
|
401 |
+
for k, v in clsDet_dict.items():
|
402 |
+
clsRatio_dict[k] = v / clsDet_dict_sum
|
403 |
+
|
404 |
+
return det_img, img_crops, objSize_dict, clsRatio_dict, dataframe, det_json, pdf_csv_xlsx
|
405 |
+
else:
|
406 |
+
print("图片目标不存在!")
|
407 |
+
return None, None, None, None, None, None, None
|
408 |
+
|
409 |
+
|
410 |
+
# YOLOv5视频检测函数
|
411 |
+
def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, model_cls, opt, draw_style):
|
412 |
+
|
413 |
+
global model, model_name_tmp, device_tmp
|
414 |
+
|
415 |
+
if video is None or video == "":
|
416 |
+
# 判断是否有图片存在
|
417 |
+
print("视频不存在!")
|
418 |
+
return None, None, None
|
419 |
+
|
420 |
+
# 目标尺寸个数
|
421 |
+
s_obj, m_obj, l_obj = 0, 0, 0
|
422 |
+
|
423 |
+
area_obj_all = [] # 目标面积
|
424 |
+
s_list, m_list, l_list = [], [], []
|
425 |
+
|
426 |
+
score_det_stat = [] # 置信度统计
|
427 |
+
bbox_det_stat = [] # 边界框统计
|
428 |
+
cls_det_stat = [] # 类别数量统计
|
429 |
+
cls_index_det_stat = [] # 类别索引统计
|
430 |
+
|
431 |
+
fps_list = []
|
432 |
+
|
433 |
+
frame_count = 0 # 帧数
|
434 |
+
fps = 0 # FPS
|
435 |
+
|
436 |
+
os.system("""
|
437 |
+
if [ -e './output.mp4' ]; then
|
438 |
+
rm ./output.mp4
|
439 |
+
fi
|
440 |
+
""")
|
441 |
+
|
442 |
+
if model_name_tmp != model_name:
|
443 |
+
# 模型判断,避免反复加载
|
444 |
+
model_name_tmp = model_name
|
445 |
+
print(f"正在加载模型{model_name_tmp}......")
|
446 |
+
model = model_loading(model_name_tmp, device, opt)
|
447 |
+
elif device_tmp != device:
|
448 |
+
# 设备判断,避免反复加载
|
449 |
+
device_tmp = device
|
450 |
+
print(f"正在加载模型{model_name_tmp}......")
|
451 |
+
model = model_loading(model_name_tmp, device, opt)
|
452 |
+
else:
|
453 |
+
print(f"正在加载模型{model_name_tmp}......")
|
454 |
+
model = model_loading(model_name_tmp, device, opt)
|
455 |
+
|
456 |
+
# ----------- 模型调参 -----------
|
457 |
+
model.conf = conf # NMS 置信度阈值
|
458 |
+
model.iou = iou # NMS IOU阈值
|
459 |
+
model.max_det = int(max_num) # 最大检测框数
|
460 |
+
model.classes = model_cls # 模型类别
|
461 |
+
|
462 |
+
color_list = color_set(len(model_cls_name_cp)) # 设置颜色
|
463 |
+
|
464 |
+
# ---------------- 加载字体 ----------------
|
465 |
+
yaml_index = cls_name.index(".yaml")
|
466 |
+
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
|
467 |
+
|
468 |
+
if cls_name_lang == "zh":
|
469 |
+
# 中文
|
470 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
|
471 |
+
elif cls_name_lang in ["en", "ru", "es", "ar"]:
|
472 |
+
# 英文、俄语、西班牙语、阿拉伯语
|
473 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
|
474 |
+
elif cls_name_lang == "ko":
|
475 |
+
# 韩语
|
476 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
|
477 |
+
|
478 |
+
# video->frame
|
479 |
+
gc.collect()
|
480 |
+
output_video_path = "./output.avi"
|
481 |
+
cap = cv2.VideoCapture(video)
|
482 |
+
fourcc = cv2.VideoWriter_fourcc(*"I420") # 编码器
|
483 |
+
|
484 |
+
out = cv2.VideoWriter(output_video_path, fourcc, 30.0, (int(cap.get(3)), int(cap.get(4))))
|
485 |
+
if cap.isOpened():
|
486 |
+
while cap.isOpened():
|
487 |
+
ret, frame = cap.read()
|
488 |
+
# 判断空帧
|
489 |
+
if not ret:
|
490 |
+
break
|
491 |
+
|
492 |
+
frame_count += 1 # 帧数自增
|
493 |
+
|
494 |
+
results = model(frame, size=infer_size) # 检测
|
495 |
+
|
496 |
+
h, w, _ = frame.shape # 帧尺寸
|
497 |
+
img_size = (w, h) # 帧尺寸
|
498 |
+
|
499 |
+
for result in results.xyxyn:
|
500 |
+
for i in range(len(result)):
|
501 |
+
# id = int(i) # 实例ID
|
502 |
+
obj_cls_index = int(result[i][5]) # 类别索引
|
503 |
+
cls_index_det_stat.append(obj_cls_index)
|
504 |
+
|
505 |
+
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
|
506 |
+
cls_det_stat.append(obj_cls)
|
507 |
+
|
508 |
+
# ------------边框坐标------------
|
509 |
+
x0 = float(result[i][:4].tolist()[0])
|
510 |
+
y0 = float(result[i][:4].tolist()[1])
|
511 |
+
x1 = float(result[i][:4].tolist()[2])
|
512 |
+
y1 = float(result[i][:4].tolist()[3])
|
513 |
+
|
514 |
+
# ------------边框实际坐标------------
|
515 |
+
x0 = int(img_size[0] * x0)
|
516 |
+
y0 = int(img_size[1] * y0)
|
517 |
+
x1 = int(img_size[0] * x1)
|
518 |
+
y1 = int(img_size[1] * y1)
|
519 |
+
bbox_det_stat.append((x0, y0, x1, y1))
|
520 |
+
|
521 |
+
conf = float(result[i][4]) # 置信度
|
522 |
+
score_det_stat.append(conf)
|
523 |
+
|
524 |
+
fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
|
525 |
+
|
526 |
+
# ---------- 加入目标尺寸 ----------
|
527 |
+
w_obj = x1 - x0
|
528 |
+
h_obj = y1 - y0
|
529 |
+
area_obj = w_obj * h_obj
|
530 |
+
area_obj_all.append(area_obj)
|
531 |
+
|
532 |
+
# 判断检测对象是否为空
|
533 |
+
# 参考:https://gitee.com/CV_Lab/face-labeling/blob/master/face_labeling.py
|
534 |
+
is_results_null = results.xyxyn[0].shape == torch.Size([0, 6])
|
535 |
+
if not is_results_null:
|
536 |
+
fps_list.append(float(fps))
|
537 |
+
else:
|
538 |
+
fps_list.append(0.0)
|
539 |
+
|
540 |
+
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
541 |
+
frame = pil_draw(frame, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont,
|
542 |
+
color_list, opt)
|
543 |
+
frame = cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR)
|
544 |
+
|
545 |
+
# frame->video
|
546 |
+
out.write(frame)
|
547 |
+
|
548 |
+
# ----- 清空统计列表 -----
|
549 |
+
score_det_stat = []
|
550 |
+
bbox_det_stat = []
|
551 |
+
cls_det_stat = []
|
552 |
+
cls_index_det_stat = []
|
553 |
+
|
554 |
+
# -------------- 目标尺寸计算 --------------
|
555 |
+
for i in range(len(area_obj_all)):
|
556 |
+
if (0 < area_obj_all[i] <= 32 ** 2):
|
557 |
+
s_obj = s_obj + 1
|
558 |
+
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2):
|
559 |
+
m_obj = m_obj + 1
|
560 |
+
elif (area_obj_all[i] > 96 ** 2):
|
561 |
+
l_obj = l_obj + 1
|
562 |
+
|
563 |
+
s_list.append(s_obj)
|
564 |
+
m_list.append(m_obj)
|
565 |
+
l_list.append(l_obj)
|
566 |
+
|
567 |
+
# 目标尺寸个数
|
568 |
+
s_obj, m_obj, l_obj = 0, 0, 0
|
569 |
+
# 目标面积
|
570 |
+
area_obj_all = []
|
571 |
+
|
572 |
+
out.release()
|
573 |
+
cap.release()
|
574 |
+
# cv2.destroyAllWindows()
|
575 |
+
|
576 |
+
df_objSize = pd.DataFrame({"fID": list(range(frame_count))})
|
577 |
+
df_objSize[obj_style[0]] = tuple(s_list)
|
578 |
+
df_objSize[obj_style[1]] = tuple(m_list)
|
579 |
+
df_objSize[obj_style[2]] = tuple(l_list)
|
580 |
+
print(df_objSize)
|
581 |
+
|
582 |
+
if draw_style == "Plotly":
|
583 |
+
# -------------------- 帧数-目标尺寸数图 --------------------
|
584 |
+
fig_objSize = px.scatter(df_objSize, x="fID", y=obj_style) # 散点图
|
585 |
+
# fig_objSize = px.line(df_objSize, x="fID", y=obj_style, markers=True) # 折线图
|
586 |
+
fig_objSize.update_layout(title="帧数-目标尺寸数", xaxis_title="帧数", yaxis_title="目标尺寸数")
|
587 |
+
|
588 |
+
# -------------------- 帧数-FPS图 --------------------
|
589 |
+
fig_fps = px.scatter(df_objSize, x="fID", y=fps_list)
|
590 |
+
# fig_fps = px.line(df_objSize, x="fID", y=fps_list, markers=True)
|
591 |
+
fig_fps.update_layout(title="帧数-FPS", xaxis_title="帧数", yaxis_title="FPS")
|
592 |
+
|
593 |
+
elif draw_style == "Matplotlib":
|
594 |
+
# -------------------- 帧数-目标尺寸数图 --------------------
|
595 |
+
fig_objSize = plt.figure()
|
596 |
+
|
597 |
+
# -------------------- 散点图 --------------------
|
598 |
+
plt.scatter(df_objSize['fID'], df_objSize[obj_style[0]])
|
599 |
+
plt.scatter(df_objSize['fID'], df_objSize[obj_style[1]])
|
600 |
+
plt.scatter(df_objSize['fID'], df_objSize[obj_style[2]])
|
601 |
+
# plt.plot(df_objSize['fID'], df_objSize[obj_style]) # 折线图
|
602 |
+
plt.title("帧数-目标尺寸数图", fontsize=12, fontproperties=SimSun)
|
603 |
+
plt.xlabel("帧数", fontsize=12, fontproperties=SimSun)
|
604 |
+
plt.ylabel("目标尺寸数", fontsize=12, fontproperties=SimSun)
|
605 |
+
plt.legend(obj_style, prop=SimSun, fontsize=12, loc="best")
|
606 |
+
|
607 |
+
# -------------------- 帧数-FPS图 --------------------
|
608 |
+
fig_fps = plt.figure()
|
609 |
+
|
610 |
+
plt.scatter(df_objSize['fID'], fps_list)
|
611 |
+
# plt.plot(df_objSize['fID'], df_objSize[obj_style]) # 折线图
|
612 |
+
plt.title("帧数-FPS", fontsize=12, fontproperties=SimSun)
|
613 |
+
plt.xlabel("帧数", fontsize=12, fontproperties=SimSun)
|
614 |
+
plt.ylabel("FPS", fontsize=12, fontproperties=SimSun)
|
615 |
+
|
616 |
+
return output_video_path, fig_objSize, fig_fps
|
617 |
+
|
618 |
+
else:
|
619 |
+
print("视频加载失败!")
|
620 |
+
return None, None, None
|
621 |
+
|
622 |
+
|
623 |
+
def main(args):
|
624 |
+
gr.close_all()
|
625 |
+
|
626 |
+
global model, model_cls_name_cp, cls_name
|
627 |
+
|
628 |
+
source = args.source
|
629 |
+
source_video = args.source_video
|
630 |
+
img_tool = args.img_tool
|
631 |
+
nms_conf = args.nms_conf
|
632 |
+
nms_iou = args.nms_iou
|
633 |
+
model_name = args.model_name
|
634 |
+
model_cfg = args.model_cfg
|
635 |
+
cls_name = args.cls_name
|
636 |
+
device = args.device
|
637 |
+
inference_size = args.inference_size
|
638 |
+
max_detnum = args.max_detnum
|
639 |
+
slider_step = args.slider_step
|
640 |
+
is_login = args.is_login
|
641 |
+
usr_pwd = args.usr_pwd
|
642 |
+
is_share = args.is_share
|
643 |
+
|
644 |
+
is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件
|
645 |
+
|
646 |
+
# 模型加载
|
647 |
+
model = model_loading(model_name, device)
|
648 |
+
|
649 |
+
model_names = yaml_csv(model_cfg, "model_names") # 模型名称
|
650 |
+
model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称
|
651 |
+
|
652 |
+
model_cls_name_cp = model_cls_name.copy() # 类别名称
|
653 |
+
|
654 |
+
# ------------------- 图片模式输入组件 -------------------
|
655 |
+
inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="原始图片")
|
656 |
+
inputs_device01 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="设备")
|
657 |
+
inputs_model01 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型")
|
658 |
+
inputs_size01 = gr.Slider(384, 1536, step=128, value=inference_size, label="推理尺寸")
|
659 |
+
input_conf01 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值")
|
660 |
+
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值")
|
661 |
+
inputs_maxnum01 = gr.Number(value=max_detnum, label="最大检测数")
|
662 |
+
inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="类别")
|
663 |
+
inputs_opt01 = gr.CheckboxGroup(choices=["refresh_yolov5", "label", "pdf", "json", "csv", "excel"],
|
664 |
+
value=["label", "pdf"],
|
665 |
+
type="value",
|
666 |
+
label="操作")
|
667 |
+
|
668 |
+
# ------------------- 视频模式输入组件 -------------------
|
669 |
+
inputs_video = gr.Video(format="mp4", source=source_video, mirror_webcam=False, label="原始视频") # webcam
|
670 |
+
inputs_device02 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="设备")
|
671 |
+
inputs_model02 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型")
|
672 |
+
inputs_size02 = gr.Slider(384, 1536, step=128, value=inference_size, label="推理尺寸")
|
673 |
+
input_conf02 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值")
|
674 |
+
inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值")
|
675 |
+
inputs_maxnum02 = gr.Number(value=max_detnum, label="最大检测数")
|
676 |
+
inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="类别")
|
677 |
+
inputs_opt02 = gr.CheckboxGroup(choices=["refresh_yolov5", "label"], value=["label"], type="value", label="操作")
|
678 |
+
inputs_draw02 = gr.Radio(choices=["Matplotlib", "Plotly"], value="Matplotlib", label="绘图")
|
679 |
+
|
680 |
+
# ------------------- 图片模式输入参数 -------------------
|
681 |
+
inputs_img_list = [
|
682 |
+
inputs_img, # 输入图片
|
683 |
+
inputs_device01, # 设备
|
684 |
+
inputs_model01, # 模型
|
685 |
+
inputs_size01, # 推理尺寸
|
686 |
+
input_conf01, # 置信度阈值
|
687 |
+
inputs_iou01, # IoU阈值
|
688 |
+
inputs_maxnum01, # 最大检测数
|
689 |
+
inputs_clsName01, # 类别
|
690 |
+
inputs_opt01, # 检测操作
|
691 |
+
]
|
692 |
+
|
693 |
+
# ------------------- 视频模式输入参数 -------------------
|
694 |
+
inputs_video_list = [
|
695 |
+
inputs_video, # 输入图片
|
696 |
+
inputs_device02, # 设备
|
697 |
+
inputs_model02, # 模型
|
698 |
+
inputs_size02, # 推理尺寸
|
699 |
+
input_conf02, # 置信度阈值
|
700 |
+
inputs_iou02, # IoU阈值
|
701 |
+
inputs_maxnum02, # 最大检测数
|
702 |
+
inputs_clsName02, # 类别
|
703 |
+
inputs_opt02, # 检测操作
|
704 |
+
inputs_draw02, # 绘图操作
|
705 |
+
]
|
706 |
+
|
707 |
+
# ------------------- 图片模式输出组件 -------------------
|
708 |
+
outputs_img = gr.Image(type="pil", label="检测图片")
|
709 |
+
outputs_df = gr.Dataframe(max_rows=5, overflow_row_behaviour="paginate", type="pandas", label="检测信息列表")
|
710 |
+
outputs_crops = gr.Gallery(label="目标裁剪")
|
711 |
+
outputs_objSize = gr.Label(label="目标尺寸占比统计")
|
712 |
+
outputs_clsSize = gr.Label(label="类别检测占比统计")
|
713 |
+
outputs_json = gr.JSON(label="检测信息")
|
714 |
+
outputs_pdf = gr.File(label="检测报告")
|
715 |
+
|
716 |
+
# ------------------- 视频模式输出组件 -------------------
|
717 |
+
outputs_video = gr.Video(format='mp4', label="检测视频")
|
718 |
+
outputs_frame_objSize_plot = gr.Plot(label="帧数-目标尺寸数")
|
719 |
+
outputs_frame_fps_plot = gr.Plot(label="帧数-FPS")
|
720 |
+
|
721 |
+
# ------------------- 图片模式输出参数 -------------------
|
722 |
+
outputs_img_list = [
|
723 |
+
outputs_img, outputs_crops, outputs_objSize, outputs_clsSize, outputs_df, outputs_json, outputs_pdf]
|
724 |
+
|
725 |
+
# ------------------- 视频模式输出参数 -------------------
|
726 |
+
outputs_video_list = [outputs_video, outputs_frame_objSize_plot, outputs_frame_fps_plot]
|
727 |
+
|
728 |
+
# 标题
|
729 |
+
title = "Gradio YOLOv5 Det v0.5"
|
730 |
+
|
731 |
+
# 描述
|
732 |
+
description = "<div align='center'>可自定义目标检测模型、安装简单、使用方便</div>"
|
733 |
+
# article="https://gitee.com/CV_Lab/gradio_yolov5_det"
|
734 |
+
|
735 |
+
# 示例图片
|
736 |
+
examples = [
|
737 |
+
[
|
738 |
+
"./img_examples/bus.jpg",
|
739 |
+
"cpu",
|
740 |
+
"yolov5s",
|
741 |
+
640,
|
742 |
+
0.6,
|
743 |
+
0.5,
|
744 |
+
10,
|
745 |
+
["人", "公交车"],
|
746 |
+
["label", "pdf"],],
|
747 |
+
[
|
748 |
+
"./img_examples/giraffe.jpg",
|
749 |
+
"cuda:0",
|
750 |
+
"yolov5l",
|
751 |
+
320,
|
752 |
+
0.5,
|
753 |
+
0.45,
|
754 |
+
12,
|
755 |
+
["长颈鹿"],
|
756 |
+
["label", "pdf"],],
|
757 |
+
[
|
758 |
+
"./img_examples/zidane.jpg",
|
759 |
+
"cuda:0",
|
760 |
+
"yolov5m",
|
761 |
+
640,
|
762 |
+
0.6,
|
763 |
+
0.5,
|
764 |
+
15,
|
765 |
+
["人", "领带"],
|
766 |
+
["pdf", "json"],],
|
767 |
+
[
|
768 |
+
"./img_examples/Millenial-at-work.jpg",
|
769 |
+
"cuda:0",
|
770 |
+
"yolov5s6",
|
771 |
+
1280,
|
772 |
+
0.5,
|
773 |
+
0.5,
|
774 |
+
20,
|
775 |
+
["人", "椅子", "杯子", "笔记本电脑"],
|
776 |
+
["label", "pdf", "csv", "excel"],],]
|
777 |
+
|
778 |
+
# 接口
|
779 |
+
gyd_img = gr.Interface(
|
780 |
+
fn=yolo_det_img,
|
781 |
+
inputs=inputs_img_list,
|
782 |
+
outputs=outputs_img_list,
|
783 |
+
title=title,
|
784 |
+
description=description,
|
785 |
+
# article=article,
|
786 |
+
examples=examples,
|
787 |
+
# theme="seafoam",
|
788 |
+
# live=True, # 实时变更输出
|
789 |
+
flagging_dir="run", # 输出目录
|
790 |
+
# allow_flagging="manual",
|
791 |
+
# flagging_options=["good", "generally", "bad"],
|
792 |
+
)
|
793 |
+
|
794 |
+
gyd_video = gr.Interface(
|
795 |
+
fn=yolo_det_video,
|
796 |
+
inputs=inputs_video_list,
|
797 |
+
outputs=outputs_video_list,
|
798 |
+
title=title,
|
799 |
+
description=description,
|
800 |
+
# article=article,
|
801 |
+
# examples=examples,
|
802 |
+
# theme="seafoam",
|
803 |
+
# live=True, # 实时变更输出
|
804 |
+
flagging_dir="run", # 输出目录
|
805 |
+
allow_flagging="never",
|
806 |
+
# flagging_options=["good", "generally", "bad"],
|
807 |
+
)
|
808 |
+
|
809 |
+
gyd = gr.TabbedInterface(interface_list=[gyd_img, gyd_video], tab_names=["图片模式", "视频模式"])
|
810 |
+
|
811 |
+
if not is_login:
|
812 |
+
gyd.launch(
|
813 |
+
inbrowser=True, # 自动打开默认浏览器
|
814 |
+
show_tips=True, # 自动显示gradio最新功能
|
815 |
+
share=is_share, # 项目共享,其他设备可以访问
|
816 |
+
favicon_path="./icon/logo.ico", # 网页图标
|
817 |
+
show_error=True, # 在浏览器控制台中显示错误信息
|
818 |
+
quiet=True, # 禁止大多数打印语句
|
819 |
+
)
|
820 |
+
else:
|
821 |
+
gyd.launch(
|
822 |
+
inbrowser=True, # 自动打开默认浏览器
|
823 |
+
show_tips=True, # 自动显示gradio最新功能
|
824 |
+
auth=usr_pwd, # 登录界面
|
825 |
+
share=is_share, # 项目共享,其他设备可以访问
|
826 |
+
favicon_path="./icon/logo.ico", # 网页图标
|
827 |
+
show_error=True, # 在浏览器控制台中显示错误信息
|
828 |
+
quiet=True, # 禁止大多数打印语句
|
829 |
+
)
|
830 |
+
|
831 |
+
|
832 |
+
if __name__ == "__main__":
|
833 |
+
args = parse_args()
|
834 |
+
main(args)
|
cls_name/cls_name.csv
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
人
|
2 |
+
自行车
|
3 |
+
汽车
|
4 |
+
摩托车
|
5 |
+
飞机
|
6 |
+
公交车
|
7 |
+
火车
|
8 |
+
卡车
|
9 |
+
船
|
10 |
+
红绿灯
|
11 |
+
消防栓
|
12 |
+
停止标志
|
13 |
+
停车收费表
|
14 |
+
长凳
|
15 |
+
鸟
|
16 |
+
猫
|
17 |
+
狗
|
18 |
+
马
|
19 |
+
羊
|
20 |
+
牛
|
21 |
+
象
|
22 |
+
熊
|
23 |
+
斑马
|
24 |
+
长颈鹿
|
25 |
+
背包
|
26 |
+
雨伞
|
27 |
+
手提包
|
28 |
+
领带
|
29 |
+
手提箱
|
30 |
+
飞盘
|
31 |
+
滑雪板
|
32 |
+
单板滑雪
|
33 |
+
运动球
|
34 |
+
风筝
|
35 |
+
棒球棒
|
36 |
+
棒球手套
|
37 |
+
滑板
|
38 |
+
冲浪板
|
39 |
+
网球拍
|
40 |
+
瓶子
|
41 |
+
红酒杯
|
42 |
+
杯子
|
43 |
+
叉子
|
44 |
+
刀
|
45 |
+
勺
|
46 |
+
碗
|
47 |
+
香蕉
|
48 |
+
苹果
|
49 |
+
三明治
|
50 |
+
橙子
|
51 |
+
西兰花
|
52 |
+
胡萝卜
|
53 |
+
热狗
|
54 |
+
比萨
|
55 |
+
甜甜圈
|
56 |
+
蛋糕
|
57 |
+
椅子
|
58 |
+
长椅
|
59 |
+
盆栽
|
60 |
+
床
|
61 |
+
餐桌
|
62 |
+
马桶
|
63 |
+
电视
|
64 |
+
笔记本电脑
|
65 |
+
鼠标
|
66 |
+
遥控器
|
67 |
+
键盘
|
68 |
+
手机
|
69 |
+
微波炉
|
70 |
+
烤箱
|
71 |
+
烤面包机
|
72 |
+
洗碗槽
|
73 |
+
冰箱
|
74 |
+
书
|
75 |
+
时钟
|
76 |
+
花瓶
|
77 |
+
剪刀
|
78 |
+
泰迪熊
|
79 |
+
吹风机
|
80 |
+
牙刷
|
cls_name/cls_name.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_cls_name: ['人', '自行车', '汽车', '摩托车', '飞机', '公交车', '火车', '卡车', '船', '红绿灯', '消防栓', '停止标志',
|
2 |
+
'停车收费表', '长凳', '鸟', '猫', '狗', '马', '羊', '牛', '象', '熊', '斑马', '长颈鹿', '背包', '雨伞', '手提包', '领带',
|
3 |
+
'手提箱', '飞盘', '滑雪板', '单板滑雪', '运动球', '风筝', '棒球棒', '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '红酒杯',
|
4 |
+
'杯子', '叉子', '刀', '勺', '碗', '香蕉', '苹果', '三明治', '橙子', '西兰花', '胡萝卜', '热狗', '比萨', '甜甜圈', '蛋糕',
|
5 |
+
'椅子', '长椅', '盆栽', '床', '餐桌', '马桶', '电视', '笔记本电脑', '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱',
|
6 |
+
'烤面包机', '洗碗槽', '冰箱', '书', '时钟', '花瓶', '剪刀', '泰迪熊', '吹风机', '牙刷'
|
7 |
+
]
|
cls_name/cls_name_ar.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_cls_name: [" الناس " , " الدراجات " , " السيارات " , " الدراجات النارية " , " الطائرات " , " الحافلات " , " القطارات " , " الشاحنات " , " السفن " , " إشارات المرور " ,
|
2 |
+
" صنبور " , " علامة " , " موقف سيارات " , " الجدول " , " مقعد " , " الطيور " , " القط " , " الكلب " , " الحصان " , " الأغنام " , " الثور " , " الفيل " ,
|
3 |
+
" الدب " , " حمار وحشي " , " الزرافة " , " حقيبة " , " مظلة " , " حقيبة يد " , " ربطة عنق " , " حقيبة " , " الفريسبي " , " الزلاجات " , " الزلاجات " ,
|
4 |
+
" الكرة الرياضية " , " طائرة ورقية " , " مضرب بيسبول " , " قفازات البيسبول " , " لوح التزلج " , " ركوب الأمواج " , " مضرب تنس " , " زجاجة " ,
|
5 |
+
" كأس " , " كأس " , " شوكة " , " سكين " , " ملعقة " , " وعاء " , " الموز " , " التفاح " , " ساندويتش " , " البرتقال " , " القرنبيط " ,
|
6 |
+
" الجزر " , " الكلاب الساخنة " , " البيتزا " , " دونات " , " كعكة " , " كرسي " , " أريكة " , " بوعاء " , " السرير " , " طاولة الطعام " , " المرحاض " ,
|
7 |
+
التلفزيون , الكمبيوتر المحمول , الفأرة , وحدة تحكم عن بعد , لوحة المفاتيح , الهاتف المحمول , فرن الميكروويف , محمصة خبز كهربائية , بالوعة , ثلاجة ,
|
8 |
+
" كتاب " , " ساعة " , " زهرية " , " مقص " , " دمية دب " , " مجفف الشعر " , " فرشاة الأسنان "
|
9 |
+
]
|
cls_name/cls_name_en.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_cls_name: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
2 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant',
|
3 |
+
'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
|
4 |
+
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle',
|
5 |
+
'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli',
|
6 |
+
'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet',
|
7 |
+
'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator',
|
8 |
+
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
9 |
+
]
|
cls_name/cls_name_es.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_cls_name: ['persona', 'bicicleta', 'coche', 'motocicleta', 'avión', 'autobús', 'tren', 'camión', 'barco', 'semáforo',
|
2 |
+
'boca de incendios', 'señal de alto', 'parquímetro', 'banco', 'pájaro', 'gato', 'perro', 'caballo', 'oveja', 'vaca', 'elefante',
|
3 |
+
'oso', 'cebra', 'jirafa', 'mochila', 'paraguas', 'bolso', 'corbata', 'maleta', 'frisbee', 'esquís', 'snowboard',
|
4 |
+
'pelota deportiva', 'cometa', 'bate de béisbol', 'guante de béisbol', 'monopatín', 'tabla de surf', 'raqueta de tenis', 'botella',
|
5 |
+
'copa de vino', 'taza', 'tenedor', 'cuchillo', 'cuchara', 'tazón', 'plátano', 'manzana', 'sándwich', 'naranja', 'brócoli',
|
6 |
+
'zanahoria', 'perrito caliente', 'pizza', 'rosquilla', 'pastel', 'silla', 'sofá', 'planta en maceta', 'cama', 'mesa de comedor', 'inodoro',
|
7 |
+
'tv', 'laptop', 'ratón', 'control remoto', 'teclado', 'celular', 'microondas', 'horno', 'tostadora', 'fregadero', 'nevera',
|
8 |
+
'libro', 'reloj', 'jarrón', 'tijeras', 'oso de peluche', 'secador de pelo', 'cepillo de dientes'
|
9 |
+
]
|
cls_name/cls_name_ko.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_cls_name: ['사람', '자전거', '자동차', '오토바이', '비행기', '버스', '기차', '트럭', '보트', '신호등',
|
2 |
+
'소화전', '정지 신호', '주차 미터기', '벤치', '새', '고양이', '개', '말', '양', '소', '코끼리',
|
3 |
+
'곰', '얼룩말', '기린', '배낭', '우산', '핸드백', '타이', '여행가방', '프리스비', '스키', '스노우보드',
|
4 |
+
'스포츠 공', '연', '야구 방망이', '야구 글러브', '스케이트보드', '서프보드', '테니스 라켓', '병',
|
5 |
+
'와인잔', '컵', '포크', '나이프', '숟가락', '그릇', '바나나', '사과', '샌드위치', '오렌지', '브로콜리',
|
6 |
+
'당근', '핫도그', '피자', '도넛', '케이크', '의자', '소파', '화분', '침대', '식탁', '화장실',
|
7 |
+
'tv', '노트북', '마우스', '리모컨', '키보드', '휴대전화', '전자레인지', '오븐', '토스터', '싱크대', '냉장고',
|
8 |
+
'책', '시계', '꽃병', '가위', '테디베어', '드라이기', '칫솔'
|
9 |
+
]
|
cls_name/cls_name_ru.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_cls_name: ['человек', 'велосипед', 'автомобиль', 'мотоцикл', 'самолет', 'автобус', 'поезд', 'грузовик', 'лодка', 'светофор',
|
2 |
+
'пожарный гидрант', 'стоп', 'паркомат', 'скамейка', 'птица', 'кошка', 'собака', 'лошадь', 'овца', 'корова', 'слон',
|
3 |
+
'медведь', 'зебра', 'жираф', 'рюкзак', 'зонт', 'сумочка', 'галстук', 'чемодан', 'фрисби', 'лыжи', 'сноуборд',
|
4 |
+
'спортивный мяч', 'воздушный змей', 'бейсбольная бита', 'бейсбольная перчатка', 'скейтборд', 'доска для серфинга', 'теннисная ракетка', 'бутылка',
|
5 |
+
'бокал', 'чашка', 'вилка', 'нож', 'ложка', 'миска', 'банан', 'яблоко', 'бутерброд', 'апельсин', 'брокколи',
|
6 |
+
'морковь', 'хот-дог', 'пицца', 'пончик', 'торт', 'стул', 'диван', 'растение в горшке', 'кровать', 'обеденный стол', 'туалет',
|
7 |
+
'телевизор', 'ноутбук', 'мышь', 'пульт', 'клавиатура', 'мобильный телефон', 'микроволновая печь', 'духовка', 'тостер', 'раковина', 'холодильник',
|
8 |
+
'книга', 'часы', 'ваза', 'ножницы', 'плюшевый мишка', 'фен', 'зубная щетка'
|
9 |
+
]
|
cls_name/cls_name_zh.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_cls_name: ['人', '自行车', '汽车', '摩托车', '飞机', '公交车', '火车', '卡车', '船', '红绿灯', '消防栓', '停止标志',
|
2 |
+
'停车收费表', '长凳', '鸟', '猫', '狗', '马', '羊', '牛', '象', '熊', '斑马', '长颈鹿', '背包', '雨伞', '手提包', '领带',
|
3 |
+
'手提箱', '飞盘', '滑雪板', '单板滑雪', '运动球', '风筝', '棒球棒', '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '红酒杯',
|
4 |
+
'杯子', '叉子', '刀', '勺', '碗', '香蕉', '苹果', '三明治', '橙子', '西兰花', '胡萝卜', '热狗', '比萨', '甜甜圈', '蛋糕',
|
5 |
+
'椅子', '长椅', '盆栽', '床', '餐桌', '马桶', '电视', '笔记本电脑', '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱',
|
6 |
+
'烤面包机', '洗碗槽', '冰箱', '书', '时钟', '花瓶', '剪刀', '泰迪熊', '吹风机', '牙刷'
|
7 |
+
]
|
img_example/Millenial-at-work.jpg
ADDED
img_example/bus.jpg
ADDED
img_example/giraffe.jpg
ADDED
img_example/read.txt
ADDED
File without changes
|
img_example/zidane.jpg
ADDED
model_config/model_name_p5_all.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
yolov5n
|
2 |
+
yolov5s
|
3 |
+
yolov5m
|
4 |
+
yolov5l
|
5 |
+
yolov5x
|
model_config/model_name_p5_all.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
model_names: ["yolov5n", "yolov5s", "yolov5m", "yolov5l", "yolov5x"]
|
model_config/model_name_p5_n.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
yolov5n
|
model_config/model_name_p5_n.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
model_names: ["yolov5n"]
|
model_config/model_name_p5_p6_all.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
model_names: ["yolov5n", "yolov5s", "yolov5m", "yolov5l", "yolov5x", "yolov5n6", "yolov5s6", "yolov5m6", "yolov5l6", "yolov5x6"]
|
model_config/model_name_p6_all.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
yolov5n6
|
2 |
+
yolov5s6
|
3 |
+
yolov5m6
|
4 |
+
yolov5l6
|
5 |
+
yolov5x6
|
model_config/model_name_p6_all.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
model_names: ["yolov5n6", "yolov5s6", "yolov5m6", "yolov5l6", "yolov5x6"]
|
model_download/yolov5_model_p5_all.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cd ./yolov5
|
2 |
+
|
3 |
+
# 下载YOLOv5模型
|
4 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt
|
5 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt
|
6 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt
|
7 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt
|
8 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt
|
model_download/yolov5_model_p5_n.sh
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cd ./yolov5
|
2 |
+
|
3 |
+
# 下载YOLOv5模型
|
4 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt
|
model_download/yolov5_model_p6_all.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cd ./yolov5
|
2 |
+
|
3 |
+
# 下载YOLOv5模型
|
4 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt
|
5 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt
|
6 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt
|
7 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt
|
8 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt
|
requirements.txt
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Base ----------------------------------------
|
2 |
+
matplotlib>=3.2.2
|
3 |
+
numpy>=1.22.3
|
4 |
+
opencv-python-headless>=4.5.5.64
|
5 |
+
Pillow>=7.1.2
|
6 |
+
PyYAML>=5.3.1
|
7 |
+
requests>=2.23.0
|
8 |
+
scipy>=1.4.1 # Google Colab version
|
9 |
+
torch>=1.7.0
|
10 |
+
torchvision>=0.8.1
|
11 |
+
tqdm>=4.41.0
|
12 |
+
|
13 |
+
# Gradio YOLOv5 Det ----------------------------------------
|
14 |
+
gradio>=3.0.3
|
15 |
+
wget>=3.2
|
16 |
+
rich>=12.2.0
|
17 |
+
fpdf>=1.7.2
|
18 |
+
plotly>=5.7.0
|
19 |
+
bokeh>=2.4.2
|
20 |
+
openpyxl>=3.0.10
|
21 |
+
|
22 |
+
# Logging -------------------------------------
|
23 |
+
tensorboard>=2.4.1
|
24 |
+
# wandb
|
25 |
+
|
26 |
+
# Plotting ------------------------------------
|
27 |
+
pandas>=1.1.4
|
28 |
+
seaborn>=0.11.0
|
29 |
+
|
30 |
+
# Export --------------------------------------
|
31 |
+
# coremltools>=4.1 # CoreML export
|
32 |
+
# onnx>=1.9.0 # ONNX export
|
33 |
+
# onnx-simplifier>=0.3.6 # ONNX simplifier
|
34 |
+
# scikit-learn==0.19.2 # CoreML quantization
|
35 |
+
# tensorflow>=2.4.1 # TFLite export
|
36 |
+
# tensorflowjs>=3.9.0 # TF.js export
|
37 |
+
# openvino-dev # OpenVINO export
|
38 |
+
|
39 |
+
# Extras --------------------------------------
|
40 |
+
ipython # interactive notebook
|
41 |
+
psutil # system utilization
|
42 |
+
thop # FLOPs computation
|
43 |
+
# albumentations>=1.0.3
|
44 |
+
# pycocotools>=2.0 # COCO mAP
|
45 |
+
# roboflow
|
util/fonts_opt.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# font management
|
2 |
+
# author: Zeng Yifu(曾逸夫)
|
3 |
+
# creation time: 2022-05-01
|
4 |
+
# email: zyfiy1314@163.com
|
5 |
+
# project homepage: https://gitee.com/CV_Lab/gradio_yolov5_det
|
6 |
+
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
import wget
|
12 |
+
from rich.console import Console
|
13 |
+
|
14 |
+
ROOT_PATH = sys.path[0] # Project root directory
|
15 |
+
|
16 |
+
# Chinese, English, Russian, Spanish, Arabic, Korean
|
17 |
+
fonts_list = ["SimSun.ttf", "TimesNewRoman.ttf", "malgun.ttf"] # font list
|
18 |
+
fonts_suffix = ["ttc", "ttf", "otf"] # font suffix
|
19 |
+
|
20 |
+
data_url_dict = {
|
21 |
+
"SimSun.ttf": "https://gitee.com/CV_Lab/gradio_yolov5_det/attach_files/1053539/download/SimSun.ttf",
|
22 |
+
"TimesNewRoman.ttf": "https://gitee.com/CV_Lab/gradio_yolov5_det/attach_files/1053537/download/TimesNewRoman.ttf",
|
23 |
+
"malgun.ttf": "https://gitee.com/CV_Lab/gradio_yolov5_det/attach_files/1053538/download/malgun.ttf",}
|
24 |
+
|
25 |
+
console = Console()
|
26 |
+
|
27 |
+
|
28 |
+
# create font library
|
29 |
+
def add_fronts(font_diff):
|
30 |
+
|
31 |
+
global font_name
|
32 |
+
|
33 |
+
for k, v in data_url_dict.items():
|
34 |
+
if k in font_diff:
|
35 |
+
font_name = v.split("/")[-1] # font name
|
36 |
+
Path(f"{ROOT_PATH}/fonts").mkdir(parents=True, exist_ok=True) # Create a directory
|
37 |
+
|
38 |
+
file_path = f"{ROOT_PATH}/fonts/{font_name}" # font path
|
39 |
+
|
40 |
+
try:
|
41 |
+
# Download font file
|
42 |
+
wget.download(v, file_path)
|
43 |
+
except Exception as e:
|
44 |
+
print("Path error! Program ended!")
|
45 |
+
print(e)
|
46 |
+
sys.exit()
|
47 |
+
else:
|
48 |
+
print()
|
49 |
+
console.print(f"{font_name} [bold green]font file download complete![/bold green] has been saved to: {file_path}")
|
50 |
+
|
51 |
+
|
52 |
+
# Determine the font file
|
53 |
+
def is_fonts(fonts_dir):
|
54 |
+
if os.path.isdir(fonts_dir):
|
55 |
+
# if the font library exists
|
56 |
+
f_list = os.listdir(fonts_dir) # local font library
|
57 |
+
|
58 |
+
font_diff = list(set(fonts_list).difference(set(f_list)))
|
59 |
+
|
60 |
+
if font_diff != []:
|
61 |
+
# font does not exist
|
62 |
+
console.print("[bold red] font does not exist, loading...[/bold red]")
|
63 |
+
add_fronts(font_diff) # Create a font library
|
64 |
+
else:
|
65 |
+
console.print(f"{fonts_list}[bold green]font already exists![/bold green]")
|
66 |
+
else:
|
67 |
+
# The font library does not exist, create a font library
|
68 |
+
console.print("[bold red]font library does not exist, creating...[/bold red]")
|
69 |
+
add_fronts(fonts_list) # Create a font library
|
util/pdf_opt.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PDF management
|
2 |
+
# author: Zeng Yifu
|
3 |
+
# creation time: 2022-05-05
|
4 |
+
|
5 |
+
from fpdf import FPDF
|
6 |
+
|
7 |
+
|
8 |
+
# PDF generation class
|
9 |
+
class PDF(FPDF):
|
10 |
+
# Reference: https://pyfpdf.readthedocs.io/en/latest/Tutorial/index.html
|
11 |
+
def header(self):
|
12 |
+
# Set Chinese font
|
13 |
+
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
14 |
+
self.set_font("SimSun", "", 16)
|
15 |
+
# Calculate width of title and position
|
16 |
+
w = self.get_string_width(title) + 6
|
17 |
+
self.set_x((210 - w) / 2)
|
18 |
+
# Colors of frame, background and text
|
19 |
+
self.set_draw_color(255, 255, 255)
|
20 |
+
self.set_fill_color(255, 255, 255)
|
21 |
+
self.set_text_color(0, 0, 0)
|
22 |
+
# Thickness of frame (1 mm)
|
23 |
+
# self.set_line_width(1)
|
24 |
+
# Title
|
25 |
+
self.cell(w, 9, title, 1, 1, "C", 1)
|
26 |
+
# Line break
|
27 |
+
self.ln(10)
|
28 |
+
|
29 |
+
def footer(self):
|
30 |
+
# Position at 1.5 cm from bottom
|
31 |
+
self.set_y(-15)
|
32 |
+
# Set Chinese font
|
33 |
+
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
34 |
+
self.set_font("SimSun", "", 12)
|
35 |
+
# Text color in gray
|
36 |
+
self.set_text_color(128)
|
37 |
+
# Page number
|
38 |
+
self.cell(0, 10, "Page " + str(self.page_no()), 0, 0, "C")
|
39 |
+
|
40 |
+
def chapter_title(self, num, label):
|
41 |
+
# Set Chinese font
|
42 |
+
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
43 |
+
self.set_font("SimSun", "", 12)
|
44 |
+
# Background color
|
45 |
+
self.set_fill_color(200, 220, 255)
|
46 |
+
# Title
|
47 |
+
# self.cell(0, 6, 'Chapter %d : %s' % (num, label), 0, 1, 'L', 1)
|
48 |
+
self.cell(0, 6, "Detection Result:", 0, 1, "L", 1)
|
49 |
+
# Line break
|
50 |
+
self.ln(4)
|
51 |
+
|
52 |
+
def chapter_body(self, name):
|
53 |
+
|
54 |
+
# Set Chinese font
|
55 |
+
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
56 |
+
self.set_font("SimSun", "", 12)
|
57 |
+
# Output justified text
|
58 |
+
self.multi_cell(0, 5, name)
|
59 |
+
# Line break
|
60 |
+
self.ln()
|
61 |
+
self.cell(0, 5, "--------------------------------------")
|
62 |
+
|
63 |
+
def print_chapter(self, num, title, name):
|
64 |
+
self.add_page()
|
65 |
+
self.chapter_title(num, title)
|
66 |
+
self.chapter_body(name)
|
67 |
+
|
68 |
+
|
69 |
+
# pdf generation function
|
70 |
+
def pdf_generate(input_file, output_file, title_):
|
71 |
+
global title
|
72 |
+
|
73 |
+
title = title_
|
74 |
+
pdf = PDF()
|
75 |
+
pdf.set_title(title)
|
76 |
+
pdf.set_author("Zeng Yifu")
|
77 |
+
pdf.print_chapter(1, "A RUNAWAY REEF", input_file)
|
78 |
+
pdf.output(output_file)
|