Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -44,7 +44,7 @@ def find_similar_texts(model_name, input_text):
|
|
44 |
distances = euclidean_distances(embedding_matrix, input_embedding).flatten()
|
45 |
text_embeddings['euclidean_distance'] = distances
|
46 |
sorted_embeddings = text_embeddings.sort_values(by='euclidean_distance', ascending=True)
|
47 |
-
top_five = sorted_embeddings.head(5)[['abstract', 'patent no']]
|
48 |
# formatted_output = '\n\n'.join([f"Patent No: {row['patent no']}\nAbstract: {row['abstract']}\n" for index, row in top_five.iterrows()])
|
49 |
formatted_output = '\n\n'.join([f"Patent No: {row['patent no']}\nTitle: {row['title']}\nAbstract: {row['abstract']}\n" for index, row in top_five.iterrows()])
|
50 |
return formatted_output
|
|
|
44 |
distances = euclidean_distances(embedding_matrix, input_embedding).flatten()
|
45 |
text_embeddings['euclidean_distance'] = distances
|
46 |
sorted_embeddings = text_embeddings.sort_values(by='euclidean_distance', ascending=True)
|
47 |
+
top_five = sorted_embeddings.head(5)[['abstract', 'patent no', 'title']]
|
48 |
# formatted_output = '\n\n'.join([f"Patent No: {row['patent no']}\nAbstract: {row['abstract']}\n" for index, row in top_five.iterrows()])
|
49 |
formatted_output = '\n\n'.join([f"Patent No: {row['patent no']}\nTitle: {row['title']}\nAbstract: {row['abstract']}\n" for index, row in top_five.iterrows()])
|
50 |
return formatted_output
|