# app.py | |
from transformers import pipeline | |
import gradio as gr | |
# Load the pretrained model using the pipeline | |
pipe = pipeline("text-generation", model="hamaadayubkhan/Psychologist") | |
# Define a function that will take user input and use the model to generate text | |
def generate_text(input_text): | |
response = pipe(input_text, max_length=100, num_return_sequences=1) | |
return response[0]['generated_text'] | |
# Set up Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Psychologist Text Generation", | |
description="Enter a prompt and the model will generate a continuation of it." | |
) | |
# Launch the app | |
interface.launch() | |