Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class GroupNorm1D(nn.Module): | |
def __init__(self, indim, groups=8): | |
super().__init__() | |
self.gn = nn.GroupNorm(groups, indim) | |
def forward(self, x): | |
return self.gn(x.permute(1, 2, 0)).permute(2, 0, 1) | |
class GNActDWConv2d(nn.Module): | |
def __init__(self, indim, gn_groups=32): | |
super().__init__() | |
self.gn = nn.GroupNorm(gn_groups, indim) | |
self.conv = nn.Conv2d(indim, | |
indim, | |
5, | |
dilation=1, | |
padding=2, | |
groups=indim, | |
bias=False) | |
def forward(self, x, size_2d): | |
h, w = size_2d | |
_, bs, c = x.size() | |
x = x.view(h, w, bs, c).permute(2, 3, 0, 1) | |
x = self.gn(x) | |
x = F.gelu(x) | |
x = self.conv(x) | |
x = x.view(bs, c, h * w).permute(2, 0, 1) | |
return x | |
class DWConv2d(nn.Module): | |
def __init__(self, indim, dropout=0.1): | |
super().__init__() | |
self.conv = nn.Conv2d(indim, | |
indim, | |
5, | |
dilation=1, | |
padding=2, | |
groups=indim, | |
bias=False) | |
self.dropout = nn.Dropout2d(p=dropout, inplace=True) | |
def forward(self, x, size_2d): | |
h, w = size_2d | |
_, bs, c = x.size() | |
x = x.view(h, w, bs, c).permute(2, 3, 0, 1) | |
x = self.conv(x) | |
x = self.dropout(x) | |
x = x.view(bs, c, h * w).permute(2, 0, 1) | |
return x | |
class ScaleOffset(nn.Module): | |
def __init__(self, indim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.ones(indim)) | |
# torch.nn.init.normal_(self.gamma, std=0.02) | |
self.beta = nn.Parameter(torch.zeros(indim)) | |
def forward(self, x): | |
if len(x.size()) == 3: | |
return x * self.gamma + self.beta | |
else: | |
return x * self.gamma.view(1, -1, 1, 1) + self.beta.view( | |
1, -1, 1, 1) | |
class ConvGN(nn.Module): | |
def __init__(self, indim, outdim, kernel_size, gn_groups=8): | |
super().__init__() | |
self.conv = nn.Conv2d(indim, | |
outdim, | |
kernel_size, | |
padding=kernel_size // 2) | |
self.gn = nn.GroupNorm(gn_groups, outdim) | |
def forward(self, x): | |
return self.gn(self.conv(x)) | |
def seq_to_2d(tensor, size_2d): | |
h, w = size_2d | |
_, n, c = tensor.size() | |
tensor = tensor.view(h, w, n, c).permute(2, 3, 0, 1).contiguous() | |
return tensor | |
def drop_path(x, drop_prob: float = 0., training: bool = False): | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = ( | |
x.shape[0], | |
x.shape[1], | |
) + (1, ) * (x.ndim - 2 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand( | |
shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
def mask_out(x, y, mask_rate=0.15, training=False): | |
if mask_rate == 0. or not training: | |
return x | |
keep_prob = 1 - mask_rate | |
shape = ( | |
x.shape[0], | |
x.shape[1], | |
) + (1, ) * (x.ndim - 2 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand( | |
shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x * random_tensor + y * (1 - random_tensor) | |
return output | |
class DropPath(nn.Module): | |
def __init__(self, drop_prob=None, batch_dim=0): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
self.batch_dim = batch_dim | |
def forward(self, x): | |
return self.drop_path(x, self.drop_prob) | |
def drop_path(self, x, drop_prob): | |
if drop_prob == 0. or not self.training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = [1 for _ in range(x.ndim)] | |
shape[self.batch_dim] = x.shape[self.batch_dim] | |
random_tensor = keep_prob + torch.rand( | |
shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropOutLogit(nn.Module): | |
def __init__(self, drop_prob=None): | |
super(DropOutLogit, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return self.drop_logit(x, self.drop_prob) | |
def drop_logit(self, x, drop_prob): | |
if drop_prob == 0. or not self.training: | |
return x | |
random_tensor = drop_prob + torch.rand( | |
x.shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
mask = random_tensor * 1e+8 if ( | |
x.dtype == torch.float32) else random_tensor * 1e+4 | |
output = x - mask | |
return output | |