Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,51 +5,23 @@ import json
|
|
5 |
import geopandas as gpd
|
6 |
import streamlit as st
|
7 |
import pandas as pd
|
8 |
-
from fastkml import kml
|
9 |
import geojson
|
10 |
from shapely.geometry import Polygon, MultiPolygon, shape, Point
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
ee_credentials = os.environ.get("EE")
|
13 |
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
14 |
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
15 |
f.write(ee_credentials)
|
16 |
-
|
17 |
ee.Initialize()
|
18 |
|
19 |
-
|
20 |
-
"""
|
21 |
-
Recursively convert any 3D coordinates in a geometry to 2D.
|
22 |
-
"""
|
23 |
-
if geometry.is_empty:
|
24 |
-
return geometry
|
25 |
-
|
26 |
-
if geometry.geom_type == 'Polygon':
|
27 |
-
return geojson.Polygon([[(x, y) for x, y, *_ in ring] for ring in geometry.coordinates])
|
28 |
-
|
29 |
-
elif geometry.geom_type == 'MultiPolygon':
|
30 |
-
return geojson.MultiPolygon([
|
31 |
-
[[(x, y) for x, y, *_ in ring] for ring in poly]
|
32 |
-
for poly in geometry.coordinates
|
33 |
-
])
|
34 |
-
|
35 |
-
elif geometry.geom_type == 'LineString':
|
36 |
-
return geojson.LineString([(x, y) for x, y, *_ in geometry.coordinates])
|
37 |
-
|
38 |
-
elif geometry.geom_type == 'MultiLineString':
|
39 |
-
return geojson.MultiLineString([
|
40 |
-
[(x, y) for x, y, *_ in line]
|
41 |
-
for line in geometry.coordinates
|
42 |
-
])
|
43 |
-
|
44 |
-
elif geometry.geom_type == 'Point':
|
45 |
-
x, y, *_ = geometry.coordinates
|
46 |
-
return geojson.Point((x, y))
|
47 |
-
|
48 |
-
elif geometry.geom_type == 'MultiPoint':
|
49 |
-
return geojson.MultiPoint([(x, y) for x, y, *_ in geometry.coordinates])
|
50 |
-
|
51 |
-
return geometry # Return unchanged if not a supported geometry type
|
52 |
-
|
53 |
def convert_to_2d_geometry(geom): #Handles Polygon Only
|
54 |
if geom is None:
|
55 |
return None
|
@@ -69,38 +41,11 @@ def convert_to_2d_geometry(geom): #Handles Polygon Only
|
|
69 |
else:
|
70 |
return geom
|
71 |
|
72 |
-
def
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
geojson_features = []
|
78 |
-
for feature in features:
|
79 |
-
geometry_2d = convert_3d_to_2d(feature.geometry)
|
80 |
-
geojson_features.append(geojson.Feature(geometry=geometry_2d))
|
81 |
-
|
82 |
-
geojson_data = geojson.FeatureCollection(geojson_features)
|
83 |
-
return geojson_data
|
84 |
-
|
85 |
-
# Calculate NDVI as Normalized Index
|
86 |
-
def reduce_zonal_ndvi(image, ee_object):
|
87 |
-
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
88 |
-
image = image.addBands(ndvi)
|
89 |
-
image = image.select('NDVI')
|
90 |
-
reduced = image.reduceRegion(
|
91 |
-
reducer=ee.Reducer.mean(),
|
92 |
-
geometry=ee_object.geometry(),
|
93 |
-
scale=10,
|
94 |
-
maxPixels=1e12
|
95 |
-
)
|
96 |
-
return image.set(reduced)
|
97 |
-
|
98 |
-
# Validate KML File for Single Polygon and return polygon information
|
99 |
-
def validate_KML_file(kml_file):
|
100 |
-
try:
|
101 |
-
gdf = gpd.read_file(kml_file)
|
102 |
-
except Exception as e:
|
103 |
-
ValueError("Input must be a valid KML file.")
|
104 |
|
105 |
if gdf.empty:
|
106 |
return {
|
@@ -110,12 +55,12 @@ def validate_KML_file(kml_file):
|
|
110 |
'is_single_polygon': False}
|
111 |
|
112 |
polygon_info = {}
|
113 |
-
|
114 |
# Check if it's a single polygon or multipolygon
|
115 |
if isinstance(gdf.iloc[0].geometry, Polygon):
|
116 |
polygon_info['is_single_polygon'] = True
|
117 |
-
|
118 |
-
polygon = gdf.geometry.iloc[0]
|
119 |
|
120 |
# Calculate corner points in GCS projection
|
121 |
polygon_info['corner_points'] = [
|
@@ -128,8 +73,8 @@ def validate_KML_file(kml_file):
|
|
128 |
# Calculate Centroids in GCS projection
|
129 |
polygon_info['centroid'] = polygon.centroid.coords[0]
|
130 |
|
131 |
-
# Calculate area and perimeter in EPSG:7761 projection
|
132 |
-
# It is a local projection defined for Gujarat as per NNRMS
|
133 |
polygon = gdf.to_crs(epsg=7761).geometry.iloc[0]
|
134 |
polygon_info['area'] = polygon.area
|
135 |
polygon_info['perimeter'] = polygon.length
|
@@ -144,6 +89,19 @@ def validate_KML_file(kml_file):
|
|
144 |
|
145 |
return polygon_info
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
# Get Zonal NDVI
|
148 |
def get_zonal_ndvi(collection, geom_ee_object):
|
149 |
reduced_collection = collection.map(lambda image: reduce_zonal_ndvi(image, ee_object=geom_ee_object))
|
@@ -153,23 +111,6 @@ def get_zonal_ndvi(collection, geom_ee_object):
|
|
153 |
df = pd.DataFrame({'NDVI': stats_list, 'Date': dates, 'Imagery': filenames})
|
154 |
return df
|
155 |
|
156 |
-
def geojson_to_ee(geojson_data):
|
157 |
-
ee_object = ee.FeatureCollection(geojson_data)
|
158 |
-
return ee_object
|
159 |
-
|
160 |
-
def kml_to_gdf(kml_file):
|
161 |
-
try:
|
162 |
-
gdf = gpd.read_file(kml_file)
|
163 |
-
for i in range(len(gdf)):
|
164 |
-
geom = gdf.iloc[i].geometry
|
165 |
-
new_geom = convert_to_2d_geometry(geom)
|
166 |
-
gdf.loc[i, 'geometry'] = new_geom
|
167 |
-
print(gdf.iloc[i].geometry)
|
168 |
-
print(f"KML file '{kml_file}' successfully read")
|
169 |
-
except Exception as e:
|
170 |
-
print(f"Error: {e}")
|
171 |
-
return gdf
|
172 |
-
|
173 |
# put title in center
|
174 |
st.markdown("""
|
175 |
<style>
|
@@ -193,65 +134,58 @@ max_cloud_cover = st.number_input("Max Cloud Cover", value=20)
|
|
193 |
# Get the geojson file from the user
|
194 |
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
|
195 |
|
196 |
-
# Read the KML file
|
197 |
-
if uploaded_file is None:
|
198 |
-
file_name = "Bhankhara_Df_11_he_5_2020-21.geojson"
|
199 |
-
st.write(f"Using default file: {file_name}")
|
200 |
-
data = gpd.read_file(file_name)
|
201 |
-
with open(file_name) as f:
|
202 |
-
str_data = f.read()
|
203 |
-
else:
|
204 |
-
st.write(f"Using uploaded file: {uploaded_file.name}")
|
205 |
-
file_name = uploaded_file.name
|
206 |
-
bytes_data = uploaded_file.getvalue()
|
207 |
-
str_data = bytes_data.decode("utf-8")
|
208 |
-
|
209 |
-
|
210 |
-
if file_name.endswith(".geojson"):
|
211 |
-
geojson_data = json.loads(str_data)
|
212 |
-
elif file_name.endswith(".kml"):
|
213 |
-
geojson_data = json.loads(kml_to_gdf(str_data).to_json())
|
214 |
|
215 |
-
# Read Geojson File
|
216 |
-
ee_object = geojson_to_ee(geojson_data)
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import geopandas as gpd
|
6 |
import streamlit as st
|
7 |
import pandas as pd
|
|
|
8 |
import geojson
|
9 |
from shapely.geometry import Polygon, MultiPolygon, shape, Point
|
10 |
+
from io import BytesIO
|
11 |
|
12 |
+
|
13 |
+
# Enable fiona driver
|
14 |
+
gpd.io.file.fiona.drvsupport.supported_drivers['KML'] = 'rw'
|
15 |
+
|
16 |
+
#Intialize EE library
|
17 |
+
# Error in EE Authentication
|
18 |
ee_credentials = os.environ.get("EE")
|
19 |
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
20 |
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
21 |
f.write(ee_credentials)
|
|
|
22 |
ee.Initialize()
|
23 |
|
24 |
+
# Functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def convert_to_2d_geometry(geom): #Handles Polygon Only
|
26 |
if geom is None:
|
27 |
return None
|
|
|
41 |
else:
|
42 |
return geom
|
43 |
|
44 |
+
def validate_KML_file(gdf):
|
45 |
+
# try:
|
46 |
+
# gdf = gpd.read_file(BytesIO(uploaded_file.read()), driver='KML')
|
47 |
+
# except Exception as e:
|
48 |
+
# ValueError("Input must be a valid KML file.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
if gdf.empty:
|
51 |
return {
|
|
|
55 |
'is_single_polygon': False}
|
56 |
|
57 |
polygon_info = {}
|
58 |
+
|
59 |
# Check if it's a single polygon or multipolygon
|
60 |
if isinstance(gdf.iloc[0].geometry, Polygon):
|
61 |
polygon_info['is_single_polygon'] = True
|
62 |
+
|
63 |
+
polygon = convert_to_2d_geometry(gdf.geometry.iloc[0])
|
64 |
|
65 |
# Calculate corner points in GCS projection
|
66 |
polygon_info['corner_points'] = [
|
|
|
73 |
# Calculate Centroids in GCS projection
|
74 |
polygon_info['centroid'] = polygon.centroid.coords[0]
|
75 |
|
76 |
+
# Calculate area and perimeter in EPSG:7761 projection
|
77 |
+
# It is a local projection defined for Gujarat as per NNRMS
|
78 |
polygon = gdf.to_crs(epsg=7761).geometry.iloc[0]
|
79 |
polygon_info['area'] = polygon.area
|
80 |
polygon_info['perimeter'] = polygon.length
|
|
|
89 |
|
90 |
return polygon_info
|
91 |
|
92 |
+
# Calculate NDVI as Normalized Index
|
93 |
+
def reduce_zonal_ndvi(image, ee_object):
|
94 |
+
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
95 |
+
image = image.addBands(ndvi)
|
96 |
+
image = image.select('NDVI')
|
97 |
+
reduced = image.reduceRegion(
|
98 |
+
reducer=ee.Reducer.mean(),
|
99 |
+
geometry=ee_object.geometry(),
|
100 |
+
scale=10,
|
101 |
+
maxPixels=1e12
|
102 |
+
)
|
103 |
+
return image.set(reduced)
|
104 |
+
|
105 |
# Get Zonal NDVI
|
106 |
def get_zonal_ndvi(collection, geom_ee_object):
|
107 |
reduced_collection = collection.map(lambda image: reduce_zonal_ndvi(image, ee_object=geom_ee_object))
|
|
|
111 |
df = pd.DataFrame({'NDVI': stats_list, 'Date': dates, 'Imagery': filenames})
|
112 |
return df
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
# put title in center
|
115 |
st.markdown("""
|
116 |
<style>
|
|
|
134 |
# Get the geojson file from the user
|
135 |
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
|
|
|
|
138 |
|
139 |
+
if uploaded_file is not None:
|
140 |
+
try:
|
141 |
+
if uploaded_file.name.endswith("kml"):
|
142 |
+
gdf = gpd.read_file(BytesIO(uploaded_file.read()), driver='KML')
|
143 |
+
elif uploaded_file.name.endswith("geojson"):
|
144 |
+
gdf = gpd.read_file(uploaded_file)
|
145 |
+
except Exception as e:
|
146 |
+
st.write('ValueError: "Input must be a valid KML file."')
|
147 |
+
st.stop()
|
148 |
+
|
149 |
+
# Validate KML File
|
150 |
+
polygon_info = validate_KML_file(gdf)
|
151 |
+
|
152 |
+
if polygon_info["is_single_polygon"]==True:
|
153 |
+
st.write("Uploaded KML file has single geometry.")
|
154 |
+
st.write("It has bounds as {0:.6f}, {1:.6f}, {2:.6f}, and {3:.6f}.".format(
|
155 |
+
polygon_info['corner_points'][0][0],
|
156 |
+
polygon_info['corner_points'][0][1],
|
157 |
+
polygon_info['corner_points'][2][0],
|
158 |
+
polygon_info['corner_points'][2][1]
|
159 |
+
))
|
160 |
+
st.write("It has centroid at ({0:.6f}, {1:.6f}).".format(polygon_info['centroid'][0], polygon_info['centroid'][1]))
|
161 |
+
st.write("It has area of {:.2f} meter squared.".format(polygon_info['area']))
|
162 |
+
st.write("It has perimeter of {:.2f} meters.".format(polygon_info['perimeter']))
|
163 |
+
|
164 |
+
# # Read KML file
|
165 |
+
# geom_ee_object = ee.FeatureCollection(json.loads(gdf.to_json()))
|
166 |
+
|
167 |
+
# # Add buffer of 100m to ee_object
|
168 |
+
# buffered_ee_object = geom_ee_object.map(lambda feature: feature.buffer(100))
|
169 |
+
|
170 |
+
# # Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
|
171 |
+
# collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8'])
|
172 |
+
|
173 |
+
# # Get Zonal NDVI based on collection and geometries (Original KML and Buffered KML)
|
174 |
+
# df_geom = get_zonal_ndvi(collection, geom_ee_object)
|
175 |
+
# df_buffered_geom = get_zonal_ndvi(collection, buffered_ee_object)
|
176 |
+
|
177 |
+
# # Merge both Zonalstats and create resultant dataframe
|
178 |
+
# resultant_df = pd.merge(df_geom, df_buffered_geom, on='Date', how='inner')
|
179 |
+
# resultant_df = resultant_df.rename(columns={'NDVI_x': 'AvgNDVI_Inside', 'NDVI_y': 'Avg_NDVI_Buffer', 'Imagery_x': 'Imagery'})
|
180 |
+
# resultant_df['Ratio'] = resultant_df['AvgNDVI_Inside'] / resultant_df['Avg_NDVI_Buffer']
|
181 |
+
# resultant_df.drop(columns=['Imagery_y'], inplace=True)
|
182 |
+
|
183 |
+
# # Re-order the columns of the resultant dataframe
|
184 |
+
# resultant_df = resultant_df[['Date', 'Imagery', 'AvgNDVI_Inside', 'Avg_NDVI_Buffer', 'Ratio']]
|
185 |
+
|
186 |
+
# st.write(resultant_df)
|
187 |
+
|
188 |
+
else:
|
189 |
+
st.write('ValueError: "Input must have single polygon geometry"')
|
190 |
+
st.write(gdf)
|
191 |
+
st.stop()
|