Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import streamlit as st | |
| import scipy.stats | |
| import matplotlib.pyplot as plt | |
| from matplotlib import rc | |
| # plt.style.use('fivethirtyeight') | |
| st.subheader("Bayesian Coin Toss") | |
| st_col = st.columns(1)[0] | |
| N = st.slider('N_samples', min_value=2, max_value=20, value=5, step=1) | |
| h = st.slider('N_heads', min_value=2, max_value=N, value=4, step=1) | |
| alpha = st.slider('Alpha', min_value=0.5, max_value=5.0, value=2.0, step=0.1) | |
| beta = st.slider('Beta', min_value=0.5, max_value=5.0, value=2.0, step=0.1) | |
| N_theta = 100 | |
| theta = np.linspace(0.01,0.99,N_theta) | |
| #rc('font', size=20) | |
| # rc('text', usetex=True) | |
| fig, ax = plt.subplots(figsize=(10,4)) | |
| axs = ax.twinx() | |
| def Bernoulli(theta, N, h): | |
| return (theta ** h) * ((1-theta) ** (N-h)) | |
| Likelihood = [Bernoulli(t,N,h) for t in theta] | |
| ax.plot(theta, Likelihood, label='Likelihood',color='b'); | |
| axs.plot(theta, scipy.stats.beta.pdf(theta, alpha,beta), label='Prior',color='k'); | |
| ax.set_xlabel('p(head)'); | |
| # ax.vlines(h/N, *ax.get_ylim(), linestyle='--',label='MLE', color='b') | |
| # axs.text(h/N,2,'MLE', color='b') | |
| axs.plot(theta, [scipy.stats.beta.pdf(t, h+alpha, N-h+beta) for t in theta], color='r') | |
| ax.text(theta[N_theta//4]+0.05, Likelihood[N_theta//4], 'Likelihood', color='b') | |
| axs.text(theta[3*N_theta//4], scipy.stats.beta.pdf(theta, alpha,beta)[3*N_theta//4],'Prior') | |
| # axs.text(alpha/(alpha+beta)-0.1,1,'Prior mean') | |
| axs.text(theta[N_theta//2]-0.05,scipy.stats.beta.pdf(theta[N_theta//2], h+alpha, N-h+beta),'Posterior',color='r') | |
| # axs.text((h+alpha)/(N+alpha+beta)-0.1,3,'Post. Mean',color='r') | |
| # ax.vlines(alpha/(alpha+beta), *ax.get_ylim(), linestyle='--',label='Prior mean',color='k') | |
| # ax.vlines((h+alpha)/(N+alpha+beta), *ax.get_ylim(), linestyle='--',label='Post. Mean',color='r') | |
| # ax.set_title(f"n_samples={int(N)}, n_heads={int(h)}"); | |
| ax.tick_params(axis='y', colors='b') | |
| axs.tick_params(axis='y', colors='r') | |
| ax.set_ylabel('Likelihood',color='b') | |
| axs.set_ylabel('Prior/Posterior', color='r', rotation=270, labelpad=30) | |
| ax.spines['top'].set_visible(False) | |
| axs.spines['top'].set_visible(False) | |
| with st_col: | |
| st.pyplot(fig) | |
| hide_streamlit_style = """ | |
| <style> | |
| #MainMenu {visibility: hidden;} | |
| footer {visibility: hidden;} | |
| </style> | |
| """ | |
| st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
| st.markdown(""" | |
| The above visualization shows the joint effect of data and prior on the posterior. There are some interesting observations here: | |
| * When prior is $Beta(1, 1)$, it becomes Uniform prior and thus **uninformative**. In this case, posterior matches with likelihood. | |
| * With an increase in the number of samples, the posterior gets closer to the likelihood. Thus, when the number of samples is less, prior plays an important role. | |
| """) |