Zeebra commited on
Commit
096a723
·
1 Parent(s): 2322b97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -22
app.py CHANGED
@@ -2,9 +2,10 @@ import gradio as gr
2
  import openai
3
  from decouple import config
4
  from gtts import gTTS
5
- import io
6
  import pydub
7
- import config
 
8
 
9
  openai.api_key = config.API_KEYS['openai']
10
 
@@ -18,18 +19,17 @@ def decipher(audio):
18
  global messages
19
 
20
  # Using openAI's speech to text model
21
- transcript = openai.Audio.transcribe("whisper-1", audio)
 
22
 
23
  messages.append({"role": "user", "content": transcript["text"]})
24
 
25
- response = openai.Completion.create(
26
- model="text-davinci-002",
27
- prompt="Conversation:\n" + "\n".join([f"{m['role']}: {m['content']}" for m in messages]),
28
- temperature=0.7,
29
- max_tokens=1024,
30
  )
31
 
32
- system_message = response.choices[0].text
33
  messages.append({"role": "assistant", "content": system_message})
34
 
35
  # Convert the text to audio using gTTS
@@ -39,11 +39,10 @@ def decipher(audio):
39
 
40
  # Convert the audio to a playable format using pydub
41
  audio_data.seek(0)
42
- audio = pydub.AudioSegment.from_file(io.BytesIO(audio_data.getvalue()))
43
 
44
- # Play the audio using VLC
45
- player = pydub.playback.play
46
- player(audio)
47
 
48
  chat_transcript = ""
49
  for message in messages:
@@ -53,12 +52,6 @@ def decipher(audio):
53
  return chat_transcript
54
 
55
  # Using Gradio's audio Interface
56
- interface = gr.Interface(fn=decipher, inputs=gr.inputs.Audio(
57
- type="filepath", label="Record a voice message"),
58
- outputs="text",
59
- title="AI Assistant",
60
- description="An AI assistant that can transcribe and respond to voice messages",
61
- theme="compact")
62
-
63
- if __name__ == "__main__":
64
- interface.launch()
 
2
  import openai
3
  from decouple import config
4
  from gtts import gTTS
5
+ import os
6
  import pydub
7
+ import io
8
+ import config
9
 
10
  openai.api_key = config.API_KEYS['openai']
11
 
 
19
  global messages
20
 
21
  # Using openAI's speech to text model
22
+ audio_file = open(audio, "rb")
23
+ transcript = openai.Audio.transcribe("whisper-1", audio_file)
24
 
25
  messages.append({"role": "user", "content": transcript["text"]})
26
 
27
+ response = openai.ChatCompletion.create(
28
+ model="gpt-3.5-turbo",
29
+ messages=messages
 
 
30
  )
31
 
32
+ system_message = response["choices"][0]["message"]["content"]
33
  messages.append({"role": "assistant", "content": system_message})
34
 
35
  # Convert the text to audio using gTTS
 
39
 
40
  # Convert the audio to a playable format using pydub
41
  audio_data.seek(0)
42
+ audio = pydub.AudioSegment.from_file(audio_data, format="mp3")
43
 
44
+ # Play the audio using pydub.playback
45
+ pydub.playback.play(audio)
 
46
 
47
  chat_transcript = ""
48
  for message in messages:
 
52
  return chat_transcript
53
 
54
  # Using Gradio's audio Interface
55
+ interface = gr.Interface(fn=decipher, inputs=gr.Audio(
56
+ source="microphone", type="filepath"), outputs="text")
57
+ interface.launch(share=True)