|
import os |
|
import streamlit as st |
|
import pdfplumber |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from transformers import pipeline |
|
|
|
|
|
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="π") |
|
|
|
|
|
@st.cache_resource |
|
def load_summarization_pipeline(): |
|
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") |
|
return summarizer |
|
|
|
summarizer = load_summarization_pipeline() |
|
|
|
|
|
def preprocess_pdfs(folder_path, save_vectorstore_path): |
|
all_text = "" |
|
pdf_files = [os.path.join(folder_path, filename) for filename in os.listdir(folder_path) if filename.endswith('.pdf')] |
|
|
|
for file_path in pdf_files: |
|
with pdfplumber.open(file_path) as pdf: |
|
for page in pdf.pages: |
|
page_text = page.extract_text() |
|
if page_text: |
|
all_text += page_text |
|
|
|
if all_text: |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) |
|
text_chunks = text_splitter.split_text(all_text) |
|
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function) |
|
vector_store.save_local(save_vectorstore_path) |
|
st.success("Data preprocessing and vector store creation completed!") |
|
|
|
|
|
@st.cache_resource |
|
def load_vector_store(save_vectorstore_path): |
|
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
return FAISS.load_local(save_vectorstore_path, embedding_function, allow_dangerous_deserialization=True) |
|
|
|
|
|
|
|
|
|
def generate_summary_with_huggingface(query, retrieved_text): |
|
summarization_input = f"{query} Related information:{retrieved_text}" |
|
max_input_length = 1024 |
|
summarization_input = summarization_input[:max_input_length] |
|
summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False) |
|
return summary[0]["summary_text"] |
|
|
|
|
|
def user_input(user_question, vector_store): |
|
docs = vector_store.similarity_search(user_question) |
|
context_text = " ".join([doc.page_content for doc in docs]) |
|
return generate_summary_with_huggingface(user_question, context_text) |
|
|
|
|
|
def main(): |
|
st.title("π Gen AI Lawyers Guide") |
|
data_folder = 'documents1' |
|
vectorstore_path = 'vector_store_data/faiss_vectorstore' |
|
|
|
|
|
|
|
|
|
|
|
vector_store = load_vector_store(vectorstore_path) |
|
|
|
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...") |
|
|
|
if st.button("Get Response"): |
|
if not user_question: |
|
st.warning("Please enter a question before submitting.") |
|
else: |
|
with st.spinner("Generating response..."): |
|
answer = user_input(user_question, vector_store) |
|
st.markdown(f"**π€ AI:** {answer}") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
|