Zasha1 commited on
Commit
e5c1252
·
verified ·
1 Parent(s): 5689c2b

Delete ml_insights.py

Browse files
Files changed (1) hide show
  1. ml_insights.py +0 -55
ml_insights.py DELETED
@@ -1,55 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
- import matplotlib.pyplot as plt
4
- import seaborn as sns
5
- from sklearn.linear_model import LinearRegression
6
- import streamlit as st
7
-
8
- def generate_insights(call_data):
9
- """
10
- Generate ML insights and visualizations from call data
11
- """
12
- # Convert call data to DataFrame
13
- df = pd.DataFrame(call_data)
14
-
15
- # Sentiment distribution pie chart
16
- plt.figure(figsize=(10, 6))
17
- sentiment_counts = df['sentiment'].value_counts()
18
- plt.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%')
19
- plt.title('Sentiment Distribution')
20
- st.pyplot(plt)
21
- plt.close()
22
-
23
- # Calculate sentiment trend
24
- df['sentiment_numeric'] = df['sentiment'].map({'POSITIVE': 1, 'NEGATIVE': -1, 'NEUTRAL': 0})
25
-
26
- # Simple trend analysis
27
- X = np.array(range(len(df))).reshape(-1, 1)
28
- y = df['sentiment_numeric'].values
29
-
30
- model = LinearRegression()
31
- model.fit(X, y)
32
-
33
- # Predict trend
34
- trend_score = model.coef_[0]
35
- trend_interpretation = (
36
- "Improving" if trend_score > 0.1 else
37
- "Declining" if trend_score < -0.1 else
38
- "Stable"
39
- )
40
-
41
- # Summary metrics
42
- st.subheader("Call Analysis Summary")
43
- st.write(f"Total Calls: {len(df)}")
44
- st.write("Sentiment Breakdown:")
45
- st.write(sentiment_counts)
46
- st.write(f"Sentiment Trend: {trend_interpretation}")
47
-
48
- def main():
49
- st.title("Sales Call Insights")
50
-
51
- # Placeholder for loading data mechanism
52
- st.write("Insights generation ready.")
53
-
54
- if __name__ == "__main__":
55
- main()