ScientificChatbot / modtran.py
ZarTShe
Clean version for HF Space
77253fa
import streamlit as st
import os
import subprocess
import pdfplumber
from lxml import etree
from bs4 import BeautifulSoup
from PyPDF2 import PdfReader
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_openai import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from langchain.agents import Tool
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import CharacterTextSplitter
from dotenv import load_dotenv
from keybert import KeyBERT
from sentence_transformers import CrossEncoder
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Initialize global variable
vectorstore_global = None
# Load OpenAI API key
def load_environment():
load_dotenv()
# PDF to XML Conversion
def convert_pdf_to_xml(pdf_file, xml_path):
os.makedirs("temp", exist_ok=True)
pdf_path = os.path.join("temp", pdf_file.name)
with open(pdf_path, 'wb') as f:
f.write(pdf_file.getbuffer())
subprocess.run(["pdftohtml", "-xml", pdf_path, xml_path], check=True)
return xml_path
# Extract text from XML
def extract_text_from_xml(xml_path, document_name):
from lxml import etree
tree = etree.parse(xml_path)
text_chunks = []
for page in tree.xpath("//page"):
page_num = int(page.get("number", 0))
texts = [text.text for text in page.xpath('.//text') if text.text]
combined_text = '\n'.join(texts)
text_chunks.append({"text": combined_text, "page": page_num, "document": document_name})
return text_chunks
# Process uploaded files
def get_uploaded_text(uploaded_files):
raw_text = []
print(f"Total uploaded files: {len(uploaded_files)}")
for uploaded_file in uploaded_files:
document_name = uploaded_file.name
if document_name.endswith(".pdf"):
xml_path = os.path.join("temp", document_name.replace(".pdf", ".xml"))
text_chunks = extract_text_from_xml(convert_pdf_to_xml(uploaded_file, xml_path), document_name)
raw_text.extend(text_chunks)
elif uploaded_file.name.endswith((".html", ".htm")):
soup = BeautifulSoup(uploaded_file.getvalue(), 'lxml')
raw_text.append({"text": soup.get_text(), "page": None, "document": document_name})
elif uploaded_file.name.endswith((".txt")):
content = uploaded_file.getvalue().decode("utf-8")
raw_text.append({"text": content, "page": None, "document": document_name})
return raw_text
# Text Chunking
def get_text_chunks(raw_text):
splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=100)
final_chunks = []
for chunk in raw_text:
for split_text in splitter.split_text(chunk["text"]):
final_chunks.append({"text": split_text, "page": chunk["page"], "document": chunk["document"]})
return final_chunks
# Vectorstore Initialization
def get_vectorstore(text_chunks):
if not text_chunks:
raise ValueError("text_chunks is empty. Cannot initialize FAISS vectorstore.")
#model_name = "BAAI/bge-large-en-v1.5"
#encode_kwargs = {'normalize_embeddings': True}
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
texts = [chunk["text"] for chunk in text_chunks]
metadatas = [{"page": chunk["page"], "document": chunk["document"]} for chunk in text_chunks]
return FAISS.from_texts(texts, embedding=embeddings, metadatas=metadatas)
def set_global_vectorstore(vectorstore):
global vectorstore_global
vectorstore_global = vectorstore
kw_model = KeyBERT()
def faiss_search_with_keywords(query):
global vectorstore_global
if vectorstore_global is None:
raise ValueError("FAISS vectorstore is not initialized.")
# Extract keywords from the query
keywords = kw_model.extract_keywords(query, keyphrase_ngram_range=(1,2), stop_words='english', top_n=5)
refined_query = " ".join([keyword[0] for keyword in keywords])
retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
docs = retriever.get_relevant_documents(refined_query)
return '\n\n'.join([f"[Page {doc.metadata.get('page', 'Unknown')}] {doc.page_content}" for doc in docs])
def self_reasoning(query, context):
llm = ChatOpenAI(model="gpt-4", temperature=0.3)
reasoning_prompt = f"""
You are an AI assistant that analyzes the context provided to answer the user's query comprehensively and clearly.
Answer in a concise, factual way using the terminology from the context. Avoid extra explanation unless explicitly asked.
If asked for the page number, mention that the provided page number is for the document, not the labeled page number.
### Example 1:
**Question:** What is the purpose of the MODTRAN GUI?
**Context:**
[Page 10 of the docuemnt] The MODTRAN GUI helps users set parameters and visualize the model's output.
**Answer:** The MODTRAN GUI assists users in parameter setup and output visualization. You can find the answer at Page 10 of the document provided.
### Example 2:
**Question:** How do you run MODTRAN on Linux?
**Context:**
[Page 15 of the docuemnt] On Linux systems, MODTRAN can be run using the `mod6c` binary via terminal.
**Answer:** Use the `mod6c` binary via terminal. (Page 15)
### Now answer:
**Question:** {query}
**Context:**
{context}
**Answer:**
"""
response = llm.predict(reasoning_prompt)
return response
def faiss_search_with_reasoning(query):
global vectorstore_global
if vectorstore_global is None:
raise ValueError("FAISS vectorstore is not initialized.")
retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
docs = retriever.get_relevant_documents(query)
# Rerank using cross-encoder
#pairs = [(query, doc.page_content) for doc in docs]
#scores = reranker.predict(pairs)
#reranked_docs = sorted(zip(scores, docs), key=lambda x: x[0], reverse=True)
#top_docs = [doc for _, doc in reranked_docs[:5]]
context = '\n\n'.join([f"[Page {doc.metadata.get('page', 'Unknown')}] {doc.page_content.strip()}" for doc in docs])
return self_reasoning(query, context)
faiss_keyword_tool = Tool(
name="FAISS Keyword Search",
func=faiss_search_with_keywords,
description="Searches FAISS with a keyword-based approach to retrieve context."
)
faiss_reasoning_tool = Tool(
name="FAISS Reasoning Search",
func=faiss_search_with_reasoning,
description="Searches FAISS with detailed reasoning to retrieve context."
)
# Agent Initialization
def initialize_chatbot_agent():
llm = ChatOpenAI(model="gpt-4", temperature=0.3)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
tools = [faiss_keyword_tool, faiss_reasoning_tool]
agent = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
memory=memory,
verbose=False,
handle_parsing_errors=True)
return agent
# Query Handler
def handle_user_query(query, agent):
response = agent.run(query)
return response
# Main Streamlit App
def main():
global vectorstore_global
load_environment()
if "agent" not in st.session_state:
st.session_state.agent = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
st.header("Chat with MODTRAN Documents :satellite:")
user_question = st.text_input("Ask a question about your uploaded files:")
with st.sidebar:
uploaded_files = st.file_uploader("Upload PDF, HTML, or MODTRAN output files:", accept_multiple_files=True)
if st.button("Process") and uploaded_files:
with st.spinner("Processing..."):
raw_text = get_uploaded_text(uploaded_files)
print(f"Total text chunks: {len(raw_text)}")
if raw_text:
print("Example chunk:", raw_text[0])
text_chunks = get_text_chunks(raw_text)
vectorstore_global = get_vectorstore(text_chunks)
st.session_state.agent = initialize_chatbot_agent()
st.success("Files processed successfully!")
if st.session_state.agent and user_question:
response = handle_user_query(user_question, st.session_state.agent)
st.session_state.chat_history.append({"user": user_question, "bot": response})
for chat in st.session_state.chat_history:
st.write(f"**You:** {chat['user']}")
st.write(f"**Bot:** {chat['bot']}")
if __name__ == "__main__":
load_environment()
main()