Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,125 +1,221 @@
|
|
1 |
-
import gradio as gr
|
2 |
import torch
|
3 |
-
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
warnings.filterwarnings("ignore")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
quantization_config=bnb_config,
|
23 |
-
device_map="auto",
|
24 |
-
trust_remote_code=True,
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
def _call(self, prompt: str, stop=None, run_manager=None) -> str:
|
37 |
-
device = "cuda:0"
|
38 |
-
peft_encoding = peft_tokenizer(prompt, return_tensors="pt").to(device)
|
39 |
-
peft_outputs = peft_model.generate(input_ids=peft_encoding.input_ids, generation_config=GenerationConfig(max_new_tokens=256, pad_token_id = peft_tokenizer.eos_token_id, \
|
40 |
-
eos_token_id = peft_tokenizer.eos_token_id, attention_mask = peft_encoding.attention_mask, \
|
41 |
-
temperature=0.4, top_p=0.6, repetition_penalty=1.3, num_return_sequences=1,))
|
42 |
-
peft_text_output = peft_tokenizer.decode(peft_outputs[0], skip_special_tokens=True)
|
43 |
-
return peft_text_output
|
44 |
|
45 |
-
|
46 |
-
def _llm_type(self) -> str:
|
47 |
-
return "custom"
|
48 |
-
|
49 |
-
llm = CustomLLM()
|
50 |
-
|
51 |
-
template = """Answer the following question truthfully.
|
52 |
-
If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'.
|
53 |
-
If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.
|
54 |
-
|
55 |
-
Example Format:
|
56 |
-
<HUMAN>: question here
|
57 |
-
<ASSISTANT>: answer here
|
58 |
-
|
59 |
-
Begin!
|
60 |
-
|
61 |
-
<HUMAN>: {query}
|
62 |
-
<ASSISTANT>:"""
|
63 |
-
|
64 |
-
prompt = PromptTemplate(template=template, input_variables=["query"])
|
65 |
-
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
66 |
-
|
67 |
-
return llm_chain
|
68 |
-
|
69 |
-
def user(user_message, history):
|
70 |
-
return "", history + [[user_message, None]]
|
71 |
-
|
72 |
-
def bot(history):
|
73 |
-
if len(history) >= 2:
|
74 |
-
query = history[-2][0] + "\n" + history[-2][1] + "\nHere, is the next QUESTION: " + history[-1][0]
|
75 |
-
else:
|
76 |
-
query = history[-1][0]
|
77 |
-
|
78 |
-
bot_message = llm_chain.run(query)
|
79 |
-
bot_message = post_process_chat(bot_message)
|
80 |
-
|
81 |
-
history[-1][1] = ""
|
82 |
-
history[-1][1] += bot_message
|
83 |
-
return history
|
84 |
-
|
85 |
-
def post_process_chat(bot_message):
|
86 |
-
try:
|
87 |
-
bot_message = re.findall(r"<ASSISTANT>:.*?Begin!", bot_message, re.DOTALL)[1]
|
88 |
-
except IndexError:
|
89 |
-
pass
|
90 |
-
|
91 |
-
bot_message = re.split(r'<ASSISTANT>\:?\s?', bot_message)[-1].split("Begin!")[0]
|
92 |
-
|
93 |
-
bot_message = re.sub(r"^(.*?\.)(?=\n|$)", r"\1", bot_message, flags=re.DOTALL)
|
94 |
-
try:
|
95 |
-
bot_message = re.search(r"(.*\.)", bot_message, re.DOTALL).group(1)
|
96 |
-
except AttributeError:
|
97 |
-
pass
|
98 |
-
|
99 |
-
bot_message = re.sub(r"\n\d.$", "", bot_message)
|
100 |
-
bot_message = re.split(r"(Goodbye|Take care|Best Wishes)", bot_message, flags=re.IGNORECASE)[0].strip()
|
101 |
-
bot_message = bot_message.replace("\n\n", "\n")
|
102 |
-
|
103 |
-
return bot_message
|
104 |
-
|
105 |
-
model = "heliosbrahma/falcon-7b-sharded-bf16-finetuned-mental-health-conversational"
|
106 |
-
peft_model, peft_tokenizer = init_model_and_tokenizer(PEFT_MODEL = model)
|
107 |
-
|
108 |
-
with gr.Blocks() as interface:
|
109 |
-
gr.HTML("""<h1>Welcome to Mental Health Conversational AI</h1>""")
|
110 |
-
gr.Markdown(
|
111 |
-
"""Chatbot specifically designed to provide psychoeducation, offer non-judgemental and empathetic support, self-assessment and monitoring.<br>
|
112 |
-
Get instant response for any mental health related queries. If the chatbot seems you need external support, then it will respond appropriately.<br>"""
|
113 |
-
)
|
114 |
-
|
115 |
-
chatbot = gr.Chatbot()
|
116 |
-
query = gr.Textbox(label="Type your query here, then press 'enter' and scroll up for response")
|
117 |
-
clear = gr.Button(value="Clear Chat History!")
|
118 |
-
clear.style(size="sm")
|
119 |
-
|
120 |
-
llm_chain = init_llm_chain(peft_model, peft_tokenizer)
|
121 |
-
|
122 |
-
query.submit(user, [query, chatbot], [query, chatbot], queue=False).then(bot, chatbot, chatbot)
|
123 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
124 |
-
|
125 |
-
interface.queue().launch()
|
|
|
|
|
1 |
import torch
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, GenerationConfig
|
4 |
+
from peft import LoraConfig, get_peft_model, PeftConfig, PeftModel, prepare_model_for_kbit_training
|
5 |
+
from trl import SFTTrainer
|
6 |
+
import warnings
|
7 |
warnings.filterwarnings("ignore")
|
8 |
|
9 |
+
data = load_dataset("heliosbrahma/mental_health_chatbot_dataset")
|
10 |
+
model_name = "vilsonrodrigues/falcon-7b-instruct-sharded" # sharded falcon-7b model
|
11 |
+
|
12 |
+
bnb_config = BitsAndBytesConfig(
|
13 |
+
load_in_4bit=True, # load model in 4-bit precision
|
14 |
+
bnb_4bit_quant_type="nf4", # pre-trained model should be quantized in 4-bit NF format
|
15 |
+
bnb_4bit_use_double_quant=True, # Using double quantization as mentioned in QLoRA paper
|
16 |
+
bnb_4bit_compute_dtype=torch.bf16, # During computation, pre-trained model should be loaded in BF16 format
|
17 |
+
)
|
18 |
+
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
model_name,
|
21 |
+
quantization_config=bnb_config, # Use bitsandbytes config
|
22 |
+
device_map="auto", # Specifying device_map="auto" so that HF Accelerate will determine which GPU to put each layer of the model on
|
23 |
+
trust_remote_code=True, # Set trust_remote_code=True to use falcon-7b model with custom code
|
24 |
+
)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Set trust_remote_code=True
|
26 |
+
tokenizer.pad_token = tokenizer.eos_token # Setting pad_token same as eos_token
|
27 |
+
model = prepare_model_for_kbit_training(model)
|
28 |
+
|
29 |
+
lora_alpha = 32 # scaling factor for the weight matrices
|
30 |
+
lora_dropout = 0.05 # dropout probability of the LoRA layers
|
31 |
+
lora_rank = 16 # dimension of the low-rank matrices
|
32 |
+
|
33 |
+
peft_config = LoraConfig(
|
34 |
+
lora_alpha=lora_alpha,
|
35 |
+
lora_dropout=lora_dropout,
|
36 |
+
r=lora_rank,
|
37 |
+
bias="none", # setting to 'none' for only training weight params instead of biases
|
38 |
+
task_type="CAUSAL_LM",
|
39 |
+
target_modules=[ # Setting names of modules in falcon-7b model that we want to apply LoRA to
|
40 |
+
"query_key_value",
|
41 |
+
"dense",
|
42 |
+
"dense_h_to_4h",
|
43 |
+
"dense_4h_to_h",
|
44 |
+
]
|
45 |
+
)
|
46 |
+
|
47 |
+
peft_model = get_peft_model(model, peft_config)
|
48 |
+
|
49 |
+
output_dir = "./falcon-7b-sharded-fp16-finetuned-mental-health-conversational"
|
50 |
+
per_device_train_batch_size = 16 # reduce batch size by 2x if out-of-memory error
|
51 |
+
gradient_accumulation_steps = 4 # increase gradient accumulation steps by 2x if batch size is reduced
|
52 |
+
optim = "paged_adamw_32bit" # activates the paging for better memory management
|
53 |
+
save_strategy="steps" # checkpoint save strategy to adopt during training
|
54 |
+
save_steps = 10 # number of updates steps before two checkpoint saves
|
55 |
+
logging_steps = 10 # number of update steps between two logs if logging_strategy="steps"
|
56 |
+
learning_rate = 2e-4 # learning rate for AdamW optimizer
|
57 |
+
max_grad_norm = 0.3 # maximum gradient norm (for gradient clipping)
|
58 |
+
max_steps = 70 # training will happen for 70 steps
|
59 |
+
warmup_ratio = 0.03 # number of steps used for a linear warmup from 0 to learning_rate
|
60 |
+
lr_scheduler_type = "cosine" # learning rate scheduler
|
61 |
+
|
62 |
+
training_arguments = TrainingArguments(
|
63 |
+
output_dir=output_dir,
|
64 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
65 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
66 |
+
optim=optim,
|
67 |
+
save_steps=save_steps,
|
68 |
+
logging_steps=logging_steps,
|
69 |
+
learning_rate=learning_rate,
|
70 |
+
bf16=True,
|
71 |
+
max_grad_norm=max_grad_norm,
|
72 |
+
max_steps=max_steps,
|
73 |
+
warmup_ratio=warmup_ratio,
|
74 |
+
group_by_length=True,
|
75 |
+
lr_scheduler_type=lr_scheduler_type,
|
76 |
+
push_to_hub=True,
|
77 |
+
)
|
78 |
+
trainer = SFTTrainer(
|
79 |
+
model=peft_model,
|
80 |
+
train_dataset=data['train'],
|
81 |
+
peft_config=peft_config,
|
82 |
+
dataset_text_field="text",
|
83 |
+
ac=1024,
|
84 |
+
tokenizer=tokenizer,
|
85 |
+
args=training_arguments,
|
86 |
+
)
|
87 |
+
|
88 |
+
# upcasting the layer norms in torch.bfloat16 for more stable training
|
89 |
+
for name, module in trainer.model.named_modules():
|
90 |
+
if "norm" in name:
|
91 |
+
module = module.to(torch.bfloat16)
|
92 |
+
|
93 |
+
peft_model.config.use_cache = False
|
94 |
+
trainer.train()
|
95 |
+
trainer.push_to_hub("therapx")
|
96 |
+
|
97 |
+
# import gradio as gr
|
98 |
+
# import torch
|
99 |
+
# import re, os, warnings
|
100 |
+
# from langchain import PromptTemplate, LLMChain
|
101 |
+
# from langchain.llms.base import LLM
|
102 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
|
103 |
+
# from peft import LoraConfig, get_peft_model, PeftConfig, PeftModel
|
104 |
+
# warnings.filterwarnings("ignore")
|
105 |
+
|
106 |
+
# def init_model_and_tokenizer(PEFT_MODEL):
|
107 |
+
# config = PeftConfig.from_pretrained(PEFT_MODEL)
|
108 |
+
# bnb_config = BitsAndBytesConfig(
|
109 |
+
# load_in_4bit=True,
|
110 |
+
# bnb_4bit_quant_type="nf4",
|
111 |
+
# bnb_4bit_use_double_quant=True,
|
112 |
+
# bnb_4bit_compute_dtype=torch.float16,
|
113 |
+
# )
|
114 |
+
|
115 |
+
# peft_base_model = AutoModelForCausalLM.from_pretrained(
|
116 |
+
# config.base_model_name_or_path,
|
117 |
+
# return_dict=True,
|
118 |
+
# quantization_config=bnb_config,
|
119 |
+
# device_map="auto",
|
120 |
+
# trust_remote_code=True,
|
121 |
+
# )
|
122 |
+
|
123 |
+
# peft_model = PeftModel.from_pretrained(peft_base_model, PEFT_MODEL)
|
124 |
+
|
125 |
+
# peft_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
126 |
+
# peft_tokenizer.pad_token = peft_tokenizer.eos_token
|
127 |
+
|
128 |
+
# return peft_model, peft_tokenizer
|
129 |
+
|
130 |
+
# def init_llm_chain(peft_model, peft_tokenizer):
|
131 |
+
# class CustomLLM(LLM):
|
132 |
+
# def _call(self, prompt: str, stop=None, run_manager=None) -> str:
|
133 |
+
# device = "cuda:0"
|
134 |
+
# peft_encoding = peft_tokenizer(prompt, return_tensors="pt").to(device)
|
135 |
+
# peft_outputs = peft_model.generate(input_ids=peft_encoding.input_ids, generation_config=GenerationConfig(max_new_tokens=256, pad_token_id = peft_tokenizer.eos_token_id, \
|
136 |
+
# eos_token_id = peft_tokenizer.eos_token_id, attention_mask = peft_encoding.attention_mask, \
|
137 |
+
# temperature=0.4, top_p=0.6, repetition_penalty=1.3, num_return_sequences=1,))
|
138 |
+
# peft_text_output = peft_tokenizer.decode(peft_outputs[0], skip_special_tokens=True)
|
139 |
+
# return peft_text_output
|
140 |
+
|
141 |
+
# @property
|
142 |
+
# def _llm_type(self) -> str:
|
143 |
+
# return "custom"
|
144 |
+
|
145 |
+
# llm = CustomLLM()
|
146 |
+
|
147 |
+
# template = """Answer the following question truthfully.
|
148 |
+
# If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'.
|
149 |
+
# If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.
|
150 |
+
|
151 |
+
# Example Format:
|
152 |
+
# <HUMAN>: question here
|
153 |
+
# <ASSISTANT>: answer here
|
154 |
+
|
155 |
+
# Begin!
|
156 |
+
|
157 |
+
# <HUMAN>: {query}
|
158 |
+
# <ASSISTANT>:"""
|
159 |
+
|
160 |
+
# prompt = PromptTemplate(template=template, input_variables=["query"])
|
161 |
+
# llm_chain = LLMChain(prompt=prompt, llm=llm)
|
162 |
+
|
163 |
+
# return llm_chain
|
164 |
+
|
165 |
+
# def user(user_message, history):
|
166 |
+
# return "", history + [[user_message, None]]
|
167 |
+
|
168 |
+
# def bot(history):
|
169 |
+
# if len(history) >= 2:
|
170 |
+
# query = history[-2][0] + "\n" + history[-2][1] + "\nHere, is the next QUESTION: " + history[-1][0]
|
171 |
+
# else:
|
172 |
+
# query = history[-1][0]
|
173 |
+
|
174 |
+
# bot_message = llm_chain.run(query)
|
175 |
+
# bot_message = post_process_chat(bot_message)
|
176 |
+
|
177 |
+
# history[-1][1] = ""
|
178 |
+
# history[-1][1] += bot_message
|
179 |
+
# return history
|
180 |
+
|
181 |
+
# def post_process_chat(bot_message):
|
182 |
+
# try:
|
183 |
+
# bot_message = re.findall(r"<ASSISTANT>:.*?Begin!", bot_message, re.DOTALL)[1]
|
184 |
+
# except IndexError:
|
185 |
+
# pass
|
186 |
+
|
187 |
+
# bot_message = re.split(r'<ASSISTANT>\:?\s?', bot_message)[-1].split("Begin!")[0]
|
188 |
+
|
189 |
+
# bot_message = re.sub(r"^(.*?\.)(?=\n|$)", r"\1", bot_message, flags=re.DOTALL)
|
190 |
+
# try:
|
191 |
+
# bot_message = re.search(r"(.*\.)", bot_message, re.DOTALL).group(1)
|
192 |
+
# except AttributeError:
|
193 |
+
# pass
|
194 |
+
|
195 |
+
# bot_message = re.sub(r"\n\d.$", "", bot_message)
|
196 |
+
# bot_message = re.split(r"(Goodbye|Take care|Best Wishes)", bot_message, flags=re.IGNORECASE)[0].strip()
|
197 |
+
# bot_message = bot_message.replace("\n\n", "\n")
|
198 |
+
|
199 |
+
# return bot_message
|
200 |
+
|
201 |
+
# model = "heliosbrahma/falcon-7b-sharded-bf16-finetuned-mental-health-conversational"
|
202 |
+
# peft_model, peft_tokenizer = init_model_and_tokenizer(PEFT_MODEL = model)
|
203 |
|
204 |
+
# with gr.Blocks() as interface:
|
205 |
+
# gr.HTML("""<h1>Welcome to Mental Health Conversational AI</h1>""")
|
206 |
+
# gr.Markdown(
|
207 |
+
# """Chatbot specifically designed to provide psychoeducation, offer non-judgemental and empathetic support, self-assessment and monitoring.<br>
|
208 |
+
# Get instant response for any mental health related queries. If the chatbot seems you need external support, then it will respond appropriately.<br>"""
|
209 |
+
# )
|
210 |
|
211 |
+
# chatbot = gr.Chatbot()
|
212 |
+
# query = gr.Textbox(label="Type your query here, then press 'enter' and scroll up for response")
|
213 |
+
# clear = gr.Button(value="Clear Chat History!")
|
214 |
+
# clear.style(size="sm")
|
215 |
|
216 |
+
# llm_chain = init_llm_chain(peft_model, peft_tokenizer)
|
217 |
|
218 |
+
# query.submit(user, [query, chatbot], [query, chatbot], queue=False).then(bot, chatbot, chatbot)
|
219 |
+
# clear.click(lambda: None, None, chatbot, queue=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
# interface.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|