|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from pycaret.classification import load_model, predict_model |
|
|
|
|
|
|
|
model = load_model('tuned_blend_specific_model_19112021') |
|
|
|
|
|
|
|
def predict(model, input_df): |
|
predictions_df = predict_model(estimator=model, data=input_df) |
|
predict_label = predictions_df["Label"][0] |
|
predict_score = predictions_df["Score"][0] |
|
amputation_risk = "" |
|
if predict_label == 1: |
|
amputation_risk = "YES" |
|
amputation_risk_output = "Amputation Risk: " + amputation_risk |
|
score_output = "Score: "+str(predict_score) |
|
|
|
html = "<div style='background-color:rgb(153, 0, 0);color:white;font-size:20px;'>" + amputation_risk_output + "<br>" + score_output + "<br>" + "</div>" |
|
else: |
|
amputation_risk = "NO" |
|
amputation_risk_output = "Amputation Risk: " + amputation_risk |
|
score_output = "Score: "+str(predict_score) |
|
html = "<div style='background-color:rgba(16, 185, 129, var(--tw-bg-opacity));color:white;font-size:20px;'>" + amputation_risk_output + "<br>" + score_output + "<br>" + "</div>" |
|
|
|
return html |
|
|
|
|
|
|
|
def predict_amputation(age, gender, race, diabetes_type): |
|
diabetes_class = "Type "+str(diabetes_type)+" diabetes" |
|
gender = gender[0] |
|
input_dict = {"AGE": age, "GENDER": gender, "RACE": race, "DIABETES_CLASS":diabetes_class, "AMPUTATION":''} |
|
|
|
input_df = pd.DataFrame([input_dict]) |
|
|
|
|
|
return str(predict(model=model, input_df=input_df)) |
|
|
|
|
|
title = "DIabetes-related Amputation Risk Calculator (DIARC)" |
|
|
|
description = "A diabetes-related amputation machine learning model trained on the diabetes dataset from the Inkosi Albert Luthuli Central Hospital (IALCH) in Durban, KwaZulu-Natal, South Africa." |
|
|
|
article = "<p style='text-align: center'><span style='font-size: 15pt;'>Copyright © DIARC. 2021. All Rights Reserved. Contact Us: <a href='mailto:smtshali@wol.co.za'>Dr Sifisiso Mtshali</a> or <a href='mailto:mahomedo@ukzn.ac.za'>Dr Ozayr Mahomed</a></span><br> ALLAHU</p>" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_amputation, |
|
title=title, |
|
description=description, |
|
article=article, |
|
inputs=[gr.inputs.Slider(minimum=0,maximum=100, step=1, default=0, label="Age"), |
|
gr.inputs.Dropdown(["Female", "Male"], default="Female", label="Gender"), |
|
gr.inputs.Dropdown(["Asian", "Black", "Coloured", "White", "Other"], default="Asian", label="Race"), |
|
gr.inputs.Dropdown(["1", "2"], default="1", label="Diabetes Type")], |
|
outputs="html", |
|
theme="grass", |
|
examples=[ |
|
[50, "Male", "Black", 2], |
|
[76, "Female", "Asian", 2], |
|
[12, "Female", "White", 1], |
|
[30, "Male", "Coloured", 1], |
|
[65, "Female", "Other", 2], |
|
], |
|
) |
|
|
|
|
|
iface.test_launch() |
|
if __name__ == "__main__": |
|
iface.launch() |
|
|