ICLR_FLAG / motif_sample.py
Zaixi's picture
Update motif_sample.py
627f393
raw
history blame
27.2 kB
import os
import shutil
import argparse
import random
import torch
import numpy as np
import math
from openbabel import pybel
import subprocess
import multiprocessing as mp
from functools import partial
from torch_geometric.data import Batch
from tqdm.auto import tqdm
from rdkit import Chem
from rdkit.Geometry import Point3D
from torch.utils.data import DataLoader
from rdkit.Chem.rdchem import BondType
from rdkit.Chem import ChemicalFeatures, rdMolDescriptors
from rdkit import RDConfig
from rdkit.Chem.Descriptors import MolLogP, qed
from copy import deepcopy
import tempfile
import contextlib
from torch_scatter import scatter_add, scatter_mean
from rdkit.Geometry import Point3D
from meeko import MoleculePreparation
from meeko import obutils
from models.flag import FLAG
from utils.transforms import *
from utils.datasets import get_dataset
from utils.misc import *
from utils.data import *
from utils.mol_tree import *
from utils.chemutils import *
from utils.dihedral_utils import *
from utils.sascorer import compute_sa_score
from rdkit.Chem import AllChem
_fscores = None
ATOM_FAMILIES = ['Acceptor', 'Donor', 'Aromatic', 'Hydrophobe', 'LumpedHydrophobe', 'NegIonizable', 'PosIonizable',
'ZnBinder']
ATOM_FAMILIES_ID = {s: i for i, s in enumerate(ATOM_FAMILIES)}
STATUS_RUNNING = 'running'
STATUS_FINISHED = 'finished'
STATUS_FAILED = 'failed'
def supress_stdout(func):
def wrapper(*a, **ka):
with open(os.devnull, 'w') as devnull:
with contextlib.redirect_stdout(devnull):
return func(*a, **ka)
return wrapper
def get_feat(mol):
fdefName = os.path.join(RDConfig.RDDataDir, 'BaseFeatures.fdef')
factory = ChemicalFeatures.BuildFeatureFactory(fdefName)
atomic_numbers = torch.LongTensor([6, 7, 8, 9, 15, 16, 17]) # C N O F P S Cl
ptable = Chem.GetPeriodicTable()
Chem.SanitizeMol(mol)
feat_mat = np.zeros([mol.GetNumAtoms(), len(ATOM_FAMILIES)], dtype=np.int_)
for feat in factory.GetFeaturesForMol(mol):
feat_mat[feat.GetAtomIds(), ATOM_FAMILIES_ID[feat.GetFamily()]] = 1
ligand_element = torch.tensor([ptable.GetAtomicNumber(atom.GetSymbol()) for atom in mol.GetAtoms()])
element = ligand_element.view(-1, 1) == atomic_numbers.view(1, -1) # (N_atoms, N_elements)
return torch.cat([element, torch.tensor(feat_mat)], dim=-1).float()
def find_reference(protein_pos, focal_id):
# Select three reference protein atoms
d = torch.norm(protein_pos - protein_pos[focal_id], dim=1)
reference_idx = torch.topk(d, k=4, largest=False)[1]
reference_pos = protein_pos[reference_idx]
return reference_pos, reference_idx
def SetAtomNum(mol, atoms):
for atom in mol.GetAtoms():
if atom.GetIdx() in atoms:
atom.SetAtomMapNum(1)
else:
atom.SetAtomMapNum(0)
return mol
def SetMolPos(mol_list, pos_list):
new_mol_list = []
for i in range(len(pos_list)):
mol = mol_list[i]
conf = mol.GetConformer(0)
pos = pos_list[i].cpu().double().numpy()
if mol.GetNumAtoms() == len(pos):
for node in range(mol.GetNumAtoms()):
x, y, z = pos[node]
conf.SetAtomPosition(node, Point3D(x,y,z))
try:
AllChem.UFFOptimizeMolecule(mol)
new_mol_list.append(mol)
except:
new_mol_list.append(mol)
return new_mol_list
def lipinski(mol):
count = 0
if qed(mol) <= 5:
count += 1
if Chem.Lipinski.NumHDonors(mol) <= 5:
count += 1
if Chem.Lipinski.NumHAcceptors(mol) <= 10:
count += 1
if Chem.Descriptors.ExactMolWt(mol) <= 500:
count += 1
if Chem.Lipinski.NumRotatableBonds(mol) <= 5:
count += 1
return count
def refine_pos(ligand_pos, protein_pos, h_ctx_ligand, h_ctx_protein, model, batch, repeats, protein_batch,
ligand_batch):
protein_offsets = torch.cumsum(protein_batch.bincount(), dim=0)
ligand_offsets = torch.cumsum(ligand_batch.bincount(), dim=0)
protein_offsets, ligand_offsets = torch.cat([torch.tensor([0]), protein_offsets]), torch.cat([torch.tensor([0]), ligand_offsets])
sr_ligand_idx, sr_protein_idx = [], []
sr_ligand_idx0, sr_ligand_idx1 = [], []
for i in range(len(repeats)):
alpha_index = batch['alpha_carbon_indicator'][protein_batch == i].nonzero().reshape(-1)
ligand_atom_index = torch.arange(repeats[i])
p_idx, q_idx = torch.cartesian_prod(ligand_atom_index, torch.arange(len(alpha_index))).chunk(2, dim=-1)
p_idx, q_idx = p_idx.squeeze(-1), q_idx.squeeze(-1)
sr_ligand_idx.append(ligand_atom_index[p_idx] + ligand_offsets[i])
sr_protein_idx.append(alpha_index[q_idx] + protein_offsets[i])
p_idx, q_idx = torch.cartesian_prod(ligand_atom_index, ligand_atom_index).chunk(2, dim=-1)
p_idx, q_idx = p_idx.squeeze(-1), q_idx.squeeze(-1)
sr_ligand_idx0.append(ligand_atom_index[p_idx] + ligand_offsets[i])
sr_ligand_idx1.append(ligand_atom_index[q_idx] + ligand_offsets[i])
sr_ligand_idx, sr_protein_idx = torch.cat(sr_ligand_idx).long(), torch.cat(sr_protein_idx).long()
sr_ligand_idx0, sr_ligand_idx1 = torch.cat(sr_ligand_idx0).long(), torch.cat(sr_ligand_idx1).long()
dist_alpha = torch.norm(ligand_pos[sr_ligand_idx] - protein_pos[sr_protein_idx], dim=1)
dist_intra = torch.norm(ligand_pos[sr_ligand_idx0] - ligand_pos[sr_ligand_idx1], dim=1)
input_dir_alpha = ligand_pos[sr_ligand_idx] - protein_pos[sr_protein_idx]
input_dir_intra = ligand_pos[sr_ligand_idx0] - ligand_pos[sr_ligand_idx1]
distance_emb1 = model.encoder.distance_expansion(torch.norm(input_dir_alpha, dim=1))
distance_emb2 = model.encoder.distance_expansion(torch.norm(input_dir_intra, dim=1))
input1 = torch.cat([h_ctx_ligand[sr_ligand_idx], h_ctx_protein[sr_protein_idx], distance_emb1], dim=-1)[dist_alpha <= 10.0]
input2 = torch.cat([h_ctx_ligand[sr_ligand_idx0], h_ctx_ligand[sr_ligand_idx1], distance_emb2], dim=-1)[dist_intra <= 10.0]
# distance cut_off
norm_dir1 = F.normalize(input_dir_alpha, p=2, dim=1)[dist_alpha <= 10.0]
norm_dir2 = F.normalize(input_dir_intra, p=2, dim=1)[dist_intra <= 10.0]
force1 = scatter_mean(model.refine_protein(input1) * norm_dir1, dim=0, index=sr_ligand_idx[dist_alpha <= 10.0], dim_size=ligand_pos.size(0))
force2 = scatter_mean(model.refine_ligand(input2) * norm_dir2, dim=0, index=sr_ligand_idx0[dist_intra <= 10.0], dim_size=ligand_pos.size(0))
ligand_pos += force1
ligand_pos += force2
ligand_pos = [ligand_pos[ligand_batch==k].float() for k in range(len(repeats))]
return ligand_pos
def ligand_gen(batch, model, vocab, config, center, device, refinement=False):
pos_list = []
feat_list = []
motif_id = [0 for _ in range(config.sample.batch_size)]
finished = torch.zeros(config.sample.batch_size).bool()
for i in range(config.sample.max_steps):
print(i)
print(finished)
if torch.sum(finished) == config.sample.batch_size:
# mol_list = SetMolPos(mol_list, pos_list)
return mol_list, pos_list
if i == 0:
focal_pred, mask_protein, h_ctx = model(protein_pos=batch['protein_pos'],
protein_atom_feature=batch['protein_atom_feature'].float(),
ligand_pos=batch['ligand_context_pos'],
ligand_atom_feature=batch['ligand_context_feature_full'].float(),
batch_protein=batch['protein_element_batch'],
batch_ligand=batch['ligand_context_element_batch'])
protein_atom_feature = batch['protein_atom_feature'].float()
focal_protein = focal_pred[mask_protein]
h_ctx_protein = h_ctx[mask_protein]
focus_score = torch.sigmoid(focal_protein)
#can_focus = focus_score > 0.5
slice_idx = torch.cat([torch.tensor([0]).to(device), torch.cumsum(batch['protein_element_batch'].bincount(), dim=0)])
focal_id = []
for j in range(len(slice_idx) - 1):
focus = focus_score[slice_idx[j]:slice_idx[j + 1]]
focal_id.append(torch.argmax(focus.reshape(-1).float()).item() + slice_idx[j].item())
focal_id = torch.tensor(focal_id, device=device)
h_ctx_focal = h_ctx_protein[focal_id]
current_wid = torch.tensor([vocab.size()] * config.sample.batch_size, device=device)
next_motif_wid, motif_prob = model.forward_motif(h_ctx_focal, current_wid, torch.arange(config.sample.batch_size, device=device).to(device))
mol_list = [Chem.MolFromSmiles(vocab.get_smiles(id)) for id in next_motif_wid]
for j in range(config.sample.batch_size):
AllChem.EmbedMolecule(mol_list[j])
AllChem.UFFOptimizeMolecule(mol_list[j])
ligand_pos, ligand_feat = torch.tensor(mol_list[j].GetConformer().GetPositions(), device=device), get_feat(mol_list[j]).to(device)
feat_list.append(ligand_feat)
# set the initial positions with distance matrix
reference_pos, reference_idx = find_reference(batch['protein_pos'][slice_idx[j]:slice_idx[j + 1]], focal_id[j] - slice_idx[j])
p_idx, l_idx = torch.cartesian_prod(torch.arange(4), torch.arange(len(ligand_pos))).chunk(2, dim=-1)
p_idx = p_idx.squeeze(-1).to(device)
l_idx = l_idx.squeeze(-1).to(device)
d_m = model.dist_mlp(torch.cat([protein_atom_feature[reference_idx[p_idx]], ligand_feat[l_idx]], dim=-1)).reshape(4,len(ligand_pos))
d_m = d_m ** 2
p_d, l_d = self_square_dist(reference_pos), self_square_dist(ligand_pos)
D = torch.cat([torch.cat([p_d, d_m], dim=1), torch.cat([d_m.permute(1, 0), l_d], dim=1)])
coordinate = eig_coord_from_dist(D)
new_pos, _, _ = kabsch_torch(coordinate[:len(reference_pos)], reference_pos,
coordinate[len(reference_pos):])
# new_pos += (center*0.8+torch.mean(reference_pos, dim=0)*0.2) - torch.mean(new_pos, dim=0)
new_pos += (center - torch.mean(new_pos, dim=0)) * .8
pos_list.append(new_pos)
atom_to_motif = [{} for _ in range(config.sample.batch_size)]
motif_to_atoms = [{} for _ in range(config.sample.batch_size)]
motif_wid = [{} for _ in range(config.sample.batch_size)]
for j in range(config.sample.batch_size):
for k in range(mol_list[j].GetNumAtoms()):
atom_to_motif[j][k] = 0
for j in range(config.sample.batch_size):
motif_to_atoms[j][0] = list(np.arange(mol_list[j].GetNumAtoms()))
motif_wid[j][0] = next_motif_wid[j].item()
else:
repeats = torch.tensor([len(pos) for pos in pos_list], device=device)
ligand_batch = torch.repeat_interleave(torch.arange(config.sample.batch_size, device=device), repeats)
focal_pred, mask_protein, h_ctx = model(protein_pos=batch['protein_pos'].float(),
protein_atom_feature=batch['protein_atom_feature'].float(),
ligand_pos=torch.cat(pos_list, dim=0).float(),
ligand_atom_feature=torch.cat(feat_list, dim=0).float(),
batch_protein=batch['protein_element_batch'],
batch_ligand=ligand_batch)
# structure refinement
if refinement:
pos_list = refine_pos(torch.cat(pos_list, dim=0).float(), batch['protein_pos'].float(),
h_ctx[~mask_protein], h_ctx[mask_protein], model, batch, repeats.tolist(),
batch['protein_element_batch'], ligand_batch)
focal_ligand = focal_pred[~mask_protein]
h_ctx_ligand = h_ctx[~mask_protein]
focus_score = torch.sigmoid(focal_ligand)
can_focus = focus_score > 0.
slice_idx = torch.cat([torch.tensor([0], device=device), torch.cumsum(repeats, dim=0)])
current_atoms_batch, current_atoms = [], []
for j in range(len(slice_idx) - 1):
focus = focus_score[slice_idx[j]:slice_idx[j + 1]]
if torch.sum(can_focus[slice_idx[j]:slice_idx[j + 1]]) > 0 and ~finished[j]:
sample_focal_atom = torch.multinomial(focus.reshape(-1).float(), 1)
focal_motif = atom_to_motif[j][sample_focal_atom.item()]
motif_id[j] = focal_motif
else:
finished[j] = True
current_atoms.extend((np.array(motif_to_atoms[j][motif_id[j]]) + slice_idx[j].item()).tolist())
current_atoms_batch.extend([j] * len(motif_to_atoms[j][motif_id[j]]))
mol_list[j] = SetAtomNum(mol_list[j], motif_to_atoms[j][motif_id[j]])
# second step: next motif prediction
current_wid = [motif_wid[j][motif_id[j]] for j in range(len(mol_list))]
next_motif_wid, motif_prob = model.forward_motif(h_ctx_ligand[torch.tensor(current_atoms)],
torch.tensor(current_wid).to(device),
torch.tensor(current_atoms_batch).to(device))
# assemble
next_motif_smiles = [vocab.get_smiles(id) for id in next_motif_wid]
new_mol_list, new_atoms, one_atom_attach, intersection, attach_fail = model.forward_attach(mol_list, next_motif_smiles, device)
for j in range(len(mol_list)):
if ~finished[j] and ~attach_fail[j]:
# num_new_atoms
mol_list[j] = new_mol_list[j]
rotatable = torch.logical_and(torch.tensor(current_atoms_batch).bincount() == 2, torch.tensor(one_atom_attach))
rotatable = torch.logical_and(rotatable, ~torch.tensor(attach_fail))
rotatable = torch.logical_and(rotatable, ~finished).to(device)
# update motif2atoms and atom2motif
for j in range(len(mol_list)):
if attach_fail[j] or finished[j]:
continue
motif_to_atoms[j][i] = new_atoms[j]
motif_wid[j][i] = next_motif_wid[j]
for k in new_atoms[j]:
atom_to_motif[j][k] = i
'''
if k in atom_to_motif[j]:
continue
else:
atom_to_motif[j][k] = i'''
# generate initial positions
for j in range(len(mol_list)):
if attach_fail[j] or finished[j]:
continue
mol = mol_list[j]
anchor = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 1]
# positions = mol.GetConformer().GetPositions()
anchor_pos = deepcopy(pos_list[j][anchor]).to(device)
Chem.SanitizeMol(mol)
AllChem.EmbedMolecule(mol, useRandomCoords=True)
try:
AllChem.UFFOptimizeMolecule(mol)
except:
print('UFF error')
anchor_pos_new = mol.GetConformer(0).GetPositions()[anchor]
new_idx = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 2]
'''
R, T = kabsch(np.matrix(anchor_pos), np.matrix(anchor_pos_new))
new_pos = R * np.matrix(mol.GetConformer().GetPositions()[new_idx]).T + np.tile(T, (1, len(new_idx)))
new_pos = np.array(new_pos.T)'''
new_pos = mol.GetConformer().GetPositions()[new_idx]
new_pos, _, _ = kabsch_torch(torch.tensor(anchor_pos_new, device=device), anchor_pos, torch.tensor(new_pos, device=device))
conf = mol.GetConformer()
# update curated parameters
pos_list[j] = torch.cat([pos_list[j], new_pos])
feat_list[j] = get_feat(mol_list[j]).to(device)
for node in range(mol.GetNumAtoms()):
conf.SetAtomPosition(node, np.array(pos_list[j][node].cpu()))
assert mol.GetNumAtoms() == len(pos_list[j])
# predict alpha and rotate (only change the position)
if torch.sum(rotatable) > 0 and i >= 2:
repeats = torch.tensor([len(pos) for pos in pos_list])
ligand_batch = torch.repeat_interleave(torch.arange(len(pos_list)), repeats).to(device)
slice_idx = torch.cat([torch.tensor([0]), torch.cumsum(repeats, dim=0)])
xy_index = [(np.array(motif_to_atoms[j][motif_id[j]]) + slice_idx[j].item()).tolist() for j in range(len(slice_idx) - 1) if rotatable[j]]
alpha = model.forward_alpha(protein_pos=batch['protein_pos'].float(),
protein_atom_feature=batch['protein_atom_feature'].float(),
ligand_pos=torch.cat(pos_list, dim=0).float(),
ligand_atom_feature=torch.cat(feat_list, dim=0).float(),
batch_protein=batch['protein_element_batch'],
batch_ligand=ligand_batch, xy_index=torch.tensor(xy_index, device=device),
rotatable=rotatable)
rotatable_id = [id for id in range(len(mol_list)) if rotatable[id]]
xy_index = [motif_to_atoms[j][motif_id[j]] for j in range(len(slice_idx) - 1) if rotatable[j]]
x_index = [intersection[j] for j in range(len(slice_idx) - 1) if rotatable[j]]
y_index = [(set(xy_index[k]) - set(x_index[k])).pop() for k in range(len(x_index))]
for j in range(len(alpha)):
mol = mol_list[rotatable_id[j]]
new_idx = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 2]
positions = deepcopy(pos_list[rotatable_id[j]])
xn_pos = positions[new_idx].float()
dir=(positions[x_index[j]] - positions[y_index[j]]).reshape(-1)
ref=positions[x_index[j]].reshape(-1)
xn_pos = rand_rotate(dir.to(device), ref.to(device), xn_pos.to(device), alpha[j], device=device)
if xn_pos.shape[0] > 0:
pos_list[rotatable_id[j]][-len(xn_pos):] = xn_pos
conf = mol.GetConformer()
for node in range(mol.GetNumAtoms()):
conf.SetAtomPosition(node, np.array(pos_list[rotatable_id[j]][node].cpu()))
assert mol.GetNumAtoms() == len(pos_list[rotatable_id[j]])
return mol_list, pos_list
def demo(data_id):
vocab_path = 'vocab.txt'
device = 'cpu'
config = './configs/sample.yml'
vocab = []
for line in open(vocab_path):
p, _, _ = line.partition(':')
vocab.append(p)
vocab = Vocab(vocab)
# Load configs
config = load_config(config)
# Data
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
masking = LigandMaskAll(vocab)
transform = Compose([
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
FeaturizeLigandBond(),
masking,
])
dataset, subsets = get_dataset(
config=config.dataset,
transform=transform,
)
testset = subsets['test']
data = testset[data_id%100]
center = data['ligand_center'].to(device)
test_set = [data for _ in range(config.sample.num_samples)]
# Model (Main)
ckpt = torch.load(config.model.checkpoint, map_location=device)
model = FLAG(
ckpt['config'].model,
protein_atom_feature_dim=protein_featurizer.feature_dim,
ligand_atom_feature_dim=ligand_featurizer.feature_dim,
vocab=vocab,
).to(device)
model.load_state_dict(ckpt['model'])
# my code goes here
sample_loader = DataLoader(test_set, batch_size=config.sample.batch_size,
shuffle=False, num_workers=config.sample.num_workers,
collate_fn=collate_mols)
with torch.no_grad():
model.eval()
number = 0
for batch in tqdm(sample_loader):
for key in batch:
batch[key] = batch[key].to(device)
gen_data, pos_list = ligand_gen(batch, model, vocab, config, center, device)
SetMolPos(gen_data, pos_list)
for mol in gen_data:
try:
AllChem.UFFOptimizeMolecule(mol)
except:
print('UFF error')
for _, mol in enumerate(gen_data):
number += 1
if mol.GetNumAtoms() < 12 or MolLogP(mol) < 0.60:
continue
filename = os.path.join('./data', 'Ligand.sdf')
writer = Chem.SDWriter(filename)
# writer.SetKekulize(False)
writer.write(mol, confId=0)
writer.close()
return filename
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./configs/sample.yml')
parser.add_argument('-i', '--data_id', type=int, default=0)
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--outdir', type=str, default='./outputs')
parser.add_argument('--vocab_path', type=str, default='vocab.txt')
parser.add_argument('--num_workers', type=int, default=64)
args = parser.parse_args()
# Load vocab
vocab = []
for line in open(args.vocab_path):
p, _, _ = line.partition(':')
vocab.append(p)
vocab = Vocab(vocab)
# Load configs
config = load_config(args.config)
config_name = os.path.basename(args.config)[:os.path.basename(args.config).rfind('.')]
seed_all(config.sample.seed)
# Logging
log_dir = get_new_log_dir(args.outdir, prefix='%s-%d' % (config_name, args.data_id))
logger = get_logger('sample', log_dir)
logger.info(args)
logger.info(config)
shutil.copyfile(args.config, os.path.join(log_dir, os.path.basename(args.config)))
# Data
logger.info('Loading data...')
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
masking = LigandMaskAll(vocab)
transform = Compose([
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
FeaturizeLigandBond(),
masking,
])
dataset, subsets = get_dataset(
config=config.dataset,
transform=transform,
)
testset = subsets['test']
data = testset[args.data_id]
center = data['ligand_center'].to(args.device)
test_set = [data for _ in range(config.sample.num_samples)]
with open(os.path.join(log_dir, 'pocket_info.txt'), 'a') as f:
f.write(data['protein_filename'] + '\n')
# Model (Main)
logger.info('Loading main model...')
ckpt = torch.load(config.model.checkpoint, map_location=args.device)
model = FLAG(
ckpt['config'].model,
protein_atom_feature_dim=protein_featurizer.feature_dim,
ligand_atom_feature_dim=ligand_featurizer.feature_dim,
vocab=vocab,
).to(args.device)
model.load_state_dict(ckpt['model'])
# my code goes here
sample_loader = DataLoader(test_set, batch_size=config.sample.batch_size,
shuffle=False, num_workers=config.sample.num_workers,
collate_fn=collate_mols)
data_list = []
try:
with torch.no_grad():
model.eval()
number = 0
number_list = []
for batch in tqdm(sample_loader):
for key in batch:
batch[key] = batch[key].to(args.device)
gen_data, pos_list = ligand_gen(batch, model, vocab, config, center, args.device)
SetMolPos(gen_data, pos_list)
for mol in gen_data:
try:
AllChem.UFFOptimizeMolecule(mol)
except:
print('UFF error')
data_list.extend(gen_data)
with open(os.path.join(log_dir, 'SMILES.txt'), 'a') as smiles_f:
for _, mol in enumerate(gen_data):
number+=1
if mol.GetNumAtoms() < 12 or MolLogP(mol) < 0.60:
continue
smiles_f.write(Chem.MolToSmiles(mol) + '\n')
writer = Chem.SDWriter(os.path.join(log_dir, '%d.sdf' % number))
# writer.SetKekulize(False)
writer.write(mol, confId=0)
writer.close()
number_list.append(number)
# Calculate metrics
print([Chem.MolToSmiles(mol) for mol in data_list])
smiles = [Chem.MolFromSmiles(Chem.MolToSmiles(mol)) for mol in data_list]
qed_list = [qed(mol) for mol in smiles if mol.GetNumAtoms() >= 8]
logp_list = [MolLogP(mol) for mol in smiles]
sa_list = [compute_sa_score(mol) for mol in smiles]
Lip_list = [lipinski(mol) for mol in smiles]
print('QED %.6f | LogP %.6f | SA %.6f | Lipinski %.6f \n' % (np.average(qed_list), np.average(logp_list), np.average(sa_list), np.average(Lip_list)))
except KeyboardInterrupt:
logger.info('Terminated. Generated molecules will be saved.')
with open(os.path.join(log_dir, 'SMILES.txt'), 'a') as smiles_f:
for i, mol in enumerate(data_list):
if mol.GetNumAtoms() < 12 or MolLogP(mol) < 0.60:
continue
smiles_f.write(Chem.MolToSmiles(mol) + '\n')
writer = Chem.SDWriter(os.path.join(log_dir, '%d.sdf' % i))
# writer.SetKekulize(False)
writer.write(mol, confId=0)
writer.close()
pool = mp.Pool(args.num_workers)
vina_list = []
pro_path = '/n/holyscratch01/mzitnik_lab/zaixizhang/pdbbind_pocket10/' + os.path.join(data['pdbid'], data['pdbid']+'_pocket.pdb')
for vina_score in tqdm(pool.imap_unordered(partial(calculate_vina, pro_path=pro_path, lig_path=log_dir), number_list), total=len(number_list)):
if vina_score != None:
vina_list.append(vina_score)
pool.close()
print('Vina: ', np.average(vina_list))