Spaces:
Runtime error
Runtime error
import json | |
from typing import List | |
from langchain.tools.base import BaseTool | |
FINISH_NAME = "finish" | |
class PromptGenerator: | |
"""A class for generating custom prompt strings. | |
Does this based on constraints, commands, resources, and performance evaluations. | |
""" | |
def __init__(self) -> None: | |
"""Initialize the PromptGenerator object. | |
Starts with empty lists of constraints, commands, resources, | |
and performance evaluations. | |
""" | |
self.constraints: List[str] = [] | |
self.commands: List[BaseTool] = [] | |
self.resources: List[str] = [] | |
self.performance_evaluation: List[str] = [] | |
self.response_format = { | |
"thoughts": { | |
"text": "thought", | |
"reasoning": "reasoning", | |
"plan": "- short bulleted\n- list that conveys\n- long-term plan", | |
"criticism": "constructive self-criticism", | |
"speak": "thoughts summary to say to user", | |
}, | |
"command": {"name": "command name", "args": {"arg name": "value"}}, | |
} | |
def add_constraint(self, constraint: str) -> None: | |
""" | |
Add a constraint to the constraints list. | |
Args: | |
constraint (str): The constraint to be added. | |
""" | |
self.constraints.append(constraint) | |
def add_tool(self, tool: BaseTool) -> None: | |
self.commands.append(tool) | |
def _generate_command_string(self, tool: BaseTool) -> str: | |
output = f"{tool.name}: {tool.description}" | |
# json_args = json.dumps(tool.args) if "tool_input" not in tool.args else tool.args[ | |
# "tool_input" | |
# ] | |
# output += f", args json schema: {json_args}" | |
return output | |
def add_resource(self, resource: str) -> None: | |
""" | |
Add a resource to the resources list. | |
Args: | |
resource (str): The resource to be added. | |
""" | |
self.resources.append(resource) | |
def add_performance_evaluation(self, evaluation: str) -> None: | |
""" | |
Add a performance evaluation item to the performance_evaluation list. | |
Args: | |
evaluation (str): The evaluation item to be added. | |
""" | |
self.performance_evaluation.append(evaluation) | |
def _generate_numbered_list(self, items: list, item_type: str = "list") -> str: | |
""" | |
Generate a numbered list from given items based on the item_type. | |
Args: | |
items (list): A list of items to be numbered. | |
item_type (str, optional): The type of items in the list. | |
Defaults to 'list'. | |
Returns: | |
str: The formatted numbered list. | |
""" | |
if item_type == "command": | |
command_strings = [ | |
f"{i + 1}. {self._generate_command_string(item)}" | |
for i, item in enumerate(items) | |
] | |
finish_description = ( | |
"use this to signal that you have finished all your objectives" | |
) | |
finish_args = ( | |
'"response": "final response to let ' | |
'people know you have finished your objectives"' | |
) | |
finish_string = ( | |
f"{len(items) + 1}. {FINISH_NAME}: " | |
f"{finish_description}, args: {finish_args}" | |
) | |
return "\n".join(command_strings + [finish_string]) | |
else: | |
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items)) | |
def generate_prompt_string(self) -> str: | |
"""Generate a prompt string. | |
Returns: | |
str: The generated prompt string. | |
""" | |
formatted_response_format = json.dumps(self.response_format, indent=4) | |
prompt_string = ( | |
f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n" | |
f"Commands:\n" | |
f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n" | |
f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n" | |
f"Performance Evaluation:\n" | |
f"{self._generate_numbered_list(self.performance_evaluation)}\n\n" | |
f"You should only respond in JSON format as described below " | |
f"\nResponse Format: \n{formatted_response_format} " | |
f"\nEnsure the response can be parsed by Python json.loads" | |
) | |
return prompt_string | |
def get_prompt(tools: List[BaseTool]) -> str: | |
"""This function generates a prompt string. | |
It includes various constraints, commands, resources, and performance evaluations. | |
Returns: | |
str: The generated prompt string. | |
""" | |
# Initialize the PromptGenerator object | |
prompt_generator = PromptGenerator() | |
# Add constraints to the PromptGenerator object | |
prompt_generator.add_constraint( | |
"~4000 word limit for short term memory. " | |
"Your short term memory is short, " | |
"so immediately save important information to files." | |
) | |
prompt_generator.add_constraint( | |
"If you are unsure how you previously did something " | |
"or want to recall past events, " | |
"thinking about similar events will help you remember." | |
) | |
prompt_generator.add_constraint("No user assistance") | |
prompt_generator.add_constraint( | |
'Exclusively use the commands listed in double quotes e.g. "command name"' | |
) | |
# Add commands to the PromptGenerator object | |
for tool in tools: | |
prompt_generator.add_tool(tool) | |
# Add resources to the PromptGenerator object | |
prompt_generator.add_resource( | |
"Internet access for searches and information gathering." | |
) | |
prompt_generator.add_resource("Long Term memory management.") | |
prompt_generator.add_resource( | |
"GPT-3.5 powered Agents for delegation of simple tasks." | |
) | |
prompt_generator.add_resource("File output.") | |
# Add performance evaluations to the PromptGenerator object | |
prompt_generator.add_performance_evaluation( | |
"Continuously review and analyze your actions " | |
"to ensure you are performing to the best of your abilities." | |
) | |
prompt_generator.add_performance_evaluation( | |
"Constructively self-criticize your big-picture behavior constantly." | |
) | |
prompt_generator.add_performance_evaluation( | |
"Reflect on past decisions and strategies to refine your approach." | |
) | |
prompt_generator.add_performance_evaluation( | |
"Every command has a cost, so be smart and efficient. " | |
"Aim to complete tasks in the least number of steps." | |
) | |
# Generate the prompt string | |
prompt_string = prompt_generator.generate_prompt_string() | |
return prompt_string | |