ZackBradshaw's picture
Upload folder using huggingface_hub
e67043b verified
raw
history blame
14 kB
"""Contains classes for querying large language models."""
from math import ceil
import os
import time
from tqdm import tqdm
from abc import ABC, abstractmethod
import openai
gpt_costs_per_thousand = {
"davinci": 0.0200,
"curie": 0.0020,
"babbage": 0.0005,
"ada": 0.0004,
}
def model_from_config(config, disable_tqdm=True):
"""Returns a model based on the config."""
model_type = config["name"]
if model_type == "GPT_forward":
return GPT_Forward(config, disable_tqdm=disable_tqdm)
elif model_type == "GPT_insert":
return GPT_Insert(config, disable_tqdm=disable_tqdm)
raise ValueError(f"Unknown model type: {model_type}")
class LLM(ABC):
"""Abstract base class for large language models."""
@abstractmethod
def generate_text(self, prompt):
"""Generates text from the model.
Parameters:
prompt: The prompt to use. This can be a string or a list of strings.
Returns:
A list of strings.
"""
pass
@abstractmethod
def log_probs(self, text, log_prob_range):
"""Returns the log probs of the text.
Parameters:
text: The text to get the log probs of. This can be a string or a list of strings.
log_prob_range: The range of characters within each string to get the log_probs of.
This is a list of tuples of the form (start, end).
Returns:
A list of log probs.
"""
pass
class GPT_Forward(LLM):
"""Wrapper for GPT-3."""
def __init__(self, config, needs_confirmation=False, disable_tqdm=True):
"""Initializes the model."""
self.config = config
self.needs_confirmation = needs_confirmation
self.disable_tqdm = disable_tqdm
def confirm_cost(self, texts, n, max_tokens):
total_estimated_cost = 0
for text in texts:
total_estimated_cost += (
gpt_get_estimated_cost(self.config, text, max_tokens) * n
)
print(f"Estimated cost: ${total_estimated_cost:.2f}")
# Ask the user to confirm in the command line
if os.getenv("LLM_SKIP_CONFIRM") is None:
confirm = input("Continue? (y/n) ")
if confirm != "y":
raise Exception("Aborted.")
def auto_reduce_n(self, fn, prompt, n):
"""Reduces n by half until the function succeeds."""
try:
return fn(prompt, n)
except BatchSizeException as e:
if n == 1:
raise e
return self.auto_reduce_n(fn, prompt, n // 2) + self.auto_reduce_n(
fn, prompt, n // 2
)
def generate_text(self, prompt, n):
if not isinstance(prompt, list):
prompt = [prompt]
if self.needs_confirmation:
self.confirm_cost(prompt, n, self.config["gpt_config"]["max_tokens"])
batch_size = self.config["batch_size"]
prompt_batches = [
prompt[i : i + batch_size] for i in range(0, len(prompt), batch_size)
]
if not self.disable_tqdm:
print(
f"[{self.config['name']}] Generating {len(prompt) * n} completions, "
f"split into {len(prompt_batches)} batches of size {batch_size * n}"
)
text = []
for prompt_batch in tqdm(prompt_batches, disable=self.disable_tqdm):
text += self.auto_reduce_n(self.__generate_text, prompt_batch, n)
return text
def complete(self, prompt, n):
"""Generates text from the model and returns the log prob data."""
if not isinstance(prompt, list):
prompt = [prompt]
batch_size = self.config["batch_size"]
prompt_batches = [
prompt[i : i + batch_size] for i in range(0, len(prompt), batch_size)
]
if not self.disable_tqdm:
print(
f"[{self.config['name']}] Generating {len(prompt) * n} completions, "
f"split into {len(prompt_batches)} batches of size {batch_size * n}"
)
res = []
for prompt_batch in tqdm(prompt_batches, disable=self.disable_tqdm):
res += self.__complete(prompt_batch, n)
return res
def log_probs(self, text, log_prob_range=None):
"""Returns the log probs of the text."""
if not isinstance(text, list):
text = [text]
if self.needs_confirmation:
self.confirm_cost(text, 1, 0)
batch_size = self.config["batch_size"]
text_batches = [
text[i : i + batch_size] for i in range(0, len(text), batch_size)
]
if log_prob_range is None:
log_prob_range_batches = [None] * len(text)
else:
assert len(log_prob_range) == len(text)
log_prob_range_batches = [
log_prob_range[i : i + batch_size]
for i in range(0, len(log_prob_range), batch_size)
]
if not self.disable_tqdm:
print(
f"[{self.config['name']}] Getting log probs for {len(text)} strings, "
f"split into {len(text_batches)} batches of (maximum) size {batch_size}"
)
log_probs = []
tokens = []
for text_batch, log_prob_range in tqdm(
list(zip(text_batches, log_prob_range_batches)), disable=self.disable_tqdm
):
log_probs_batch, tokens_batch = self.__log_probs(text_batch, log_prob_range)
log_probs += log_probs_batch
tokens += tokens_batch
return log_probs, tokens
def __generate_text(self, prompt, n):
"""Generates text from the model."""
if not isinstance(prompt, list):
text = [prompt]
config = self.config["gpt_config"].copy()
config["n"] = n
# If there are any [APE] tokens in the prompts, remove them
for i in range(len(prompt)):
prompt[i] = prompt[i].replace("[APE]", "").strip()
response = None
while response is None:
try:
response = openai.Completion.create(**config, prompt=prompt)
except Exception as e:
if "is greater than the maximum" in str(e):
raise BatchSizeException()
print(e)
print("Retrying...")
time.sleep(5)
return [response["choices"][i]["text"] for i in range(len(response["choices"]))]
def __complete(self, prompt, n):
"""Generates text from the model and returns the log prob data."""
if not isinstance(prompt, list):
text = [prompt]
config = self.config["gpt_config"].copy()
config["n"] = n
# If there are any [APE] tokens in the prompts, remove them
for i in range(len(prompt)):
prompt[i] = prompt[i].replace("[APE]", "").strip()
response = None
while response is None:
try:
response = openai.Completion.create(**config, prompt=prompt)
except Exception as e:
print(e)
print("Retrying...")
time.sleep(5)
return response["choices"]
def __log_probs(self, text, log_prob_range=None):
"""Returns the log probs of the text."""
if not isinstance(text, list):
text = [text]
if log_prob_range is not None:
for i in range(len(text)):
lower_index, upper_index = log_prob_range[i]
assert lower_index < upper_index
assert lower_index >= 0
assert upper_index - 1 < len(text[i])
config = self.config["gpt_config"].copy()
config["logprobs"] = 1
config["echo"] = True
config["max_tokens"] = 0
if isinstance(text, list):
text = [f"\n{text[i]}" for i in range(len(text))]
else:
text = f"\n{text}"
response = None
while response is None:
try:
response = openai.Completion.create(**config, prompt=text)
except Exception as e:
print(e)
print("Retrying...")
time.sleep(5)
log_probs = [
response["choices"][i]["logprobs"]["token_logprobs"][1:]
for i in range(len(response["choices"]))
]
tokens = [
response["choices"][i]["logprobs"]["tokens"][1:]
for i in range(len(response["choices"]))
]
offsets = [
response["choices"][i]["logprobs"]["text_offset"][1:]
for i in range(len(response["choices"]))
]
# Subtract 1 from the offsets to account for the newline
for i in range(len(offsets)):
offsets[i] = [offset - 1 for offset in offsets[i]]
if log_prob_range is not None:
# First, we need to find the indices of the tokens in the log probs
# that correspond to the tokens in the log_prob_range
for i in range(len(log_probs)):
lower_index, upper_index = self.get_token_indices(
offsets[i], log_prob_range[i]
)
log_probs[i] = log_probs[i][lower_index:upper_index]
tokens[i] = tokens[i][lower_index:upper_index]
return log_probs, tokens
def get_token_indices(self, offsets, log_prob_range):
"""Returns the indices of the tokens in the log probs that correspond to the tokens in the log_prob_range."""
# For the lower index, find the highest index that is less than or equal to the lower index
lower_index = 0
for i in range(len(offsets)):
if offsets[i] <= log_prob_range[0]:
lower_index = i
else:
break
upper_index = len(offsets)
for i in range(len(offsets)):
if offsets[i] >= log_prob_range[1]:
upper_index = i
break
return lower_index, upper_index
class GPT_Insert(LLM):
def __init__(self, config, needs_confirmation=False, disable_tqdm=True):
"""Initializes the model."""
self.config = config
self.needs_confirmation = needs_confirmation
self.disable_tqdm = disable_tqdm
def confirm_cost(self, texts, n, max_tokens):
total_estimated_cost = 0
for text in texts:
total_estimated_cost += (
gpt_get_estimated_cost(self.config, text, max_tokens) * n
)
print(f"Estimated cost: ${total_estimated_cost:.2f}")
# Ask the user to confirm in the command line
if os.getenv("LLM_SKIP_CONFIRM") is None:
confirm = input("Continue? (y/n) ")
if confirm != "y":
raise Exception("Aborted.")
def auto_reduce_n(self, fn, prompt, n):
"""Reduces n by half until the function succeeds."""
try:
return fn(prompt, n)
except BatchSizeException as e:
if n == 1:
raise e
return self.auto_reduce_n(fn, prompt, n // 2) + self.auto_reduce_n(
fn, prompt, n // 2
)
def generate_text(self, prompt, n):
if not isinstance(prompt, list):
prompt = [prompt]
if self.needs_confirmation:
self.confirm_cost(prompt, n, self.config["gpt_config"]["max_tokens"])
batch_size = self.config["batch_size"]
assert batch_size == 1
prompt_batches = [
prompt[i : i + batch_size] for i in range(0, len(prompt), batch_size)
]
if not self.disable_tqdm:
print(
f"[{self.config['name']}] Generating {len(prompt) * n} completions, split into {len(prompt_batches)} batches of (maximum) size {batch_size * n}"
)
text = []
for prompt_batch in tqdm(prompt_batches, disable=self.disable_tqdm):
text += self.auto_reduce_n(self.__generate_text, prompt_batch, n)
return text
def log_probs(self, text, log_prob_range=None):
raise NotImplementedError
def __generate_text(self, prompt, n):
"""Generates text from the model."""
config = self.config["gpt_config"].copy()
config["n"] = n
# Split prompts into prefixes and suffixes with the [APE] token (do not include the [APE] token in the suffix)
prefix = prompt[0].split("[APE]")[0]
suffix = prompt[0].split("[APE]")[1]
response = None
while response is None:
try:
response = openai.Completion.create(
**config, prompt=prefix, suffix=suffix
)
except Exception as e:
print(e)
print("Retrying...")
time.sleep(5)
# Remove suffix from the generated text
texts = [
response["choices"][i]["text"].replace(suffix, "")
for i in range(len(response["choices"]))
]
return texts
def gpt_get_estimated_cost(config, prompt, max_tokens):
"""Uses the current API costs/1000 tokens to estimate the cost of generating text from the model."""
# Get rid of [APE] token
prompt = prompt.replace("[APE]", "")
# Get the number of tokens in the prompt
n_prompt_tokens = len(prompt) // 4
# Get the number of tokens in the generated text
total_tokens = n_prompt_tokens + max_tokens
engine = config["gpt_config"]["model"].split("-")[1]
costs_per_thousand = gpt_costs_per_thousand
if engine not in costs_per_thousand:
# Try as if it is a fine-tuned model
engine = config["gpt_config"]["model"].split(":")[0]
costs_per_thousand = {
"davinci": 0.1200,
"curie": 0.0120,
"babbage": 0.0024,
"ada": 0.0016,
}
price = costs_per_thousand[engine] * total_tokens / 1000
return price
class BatchSizeException(Exception):
pass