doevent's picture
Update app.py
ae52322
raw
history blame
1.61 kB
import torch
from PIL import Image
import numpy as np
from realesrgan import RealESRGAN
import os
import gradio as gr
os.system("gdown https://drive.google.com/uc?id=1pG2S3sYvSaO0V0B8QPOl1RapPHpUGOaV -O RealESRGAN_x2.pth")
os.system("gdown https://drive.google.com/uc?id=1SGHdZAln4en65_NQeQY9UjchtkEF9f5F -O RealESRGAN_x4.pth")
os.system("gdown https://drive.google.com/uc?id=1mT9ewx86PSrc43b-ax47l1E2UzR7Ln4j -O RealESRGAN_x8.pth")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('RealESRGAN_x2.pth')
model4 = RealESRGAN(device, scale=4)
model4.load_weights('RealESRGAN_x4.pth')
model8 = RealESRGAN(device, scale=8)
model8.load_weights('RealESRGAN_x8.pth')
def inference(image: Image, size: str) -> Image:
if size == '2x':
result = model2.predict(image.convert('RGB'))
elif size == '4x':
result = model4.predict(image.convert('RGB'))
else:
result = model8.predict(image.convert('RGB'))
return result
title = "Face Real ESRGAN: 2x 4x 8x"
description = "Increases the resolution of a photo. This model shows better results on faces compared to the original version."
article = ""
gr.Interface(inference,
[gr.inputs.Image(type="pil"),
gr.inputs.Radio(['2x', '4x', '8x'],
type="value",
default='2x',
label='Resolution model')],
gr.outputs.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
examples=[['groot.jpeg', "2x"]],
allow_flagging='never',
theme="default",
).launch(enable_queue=True)