UDiffText / app.py
ZYMPKU's picture
v1
ed25868
raw
history blame
9.65 kB
import cv2
import torch
import os, glob
import numpy as np
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from contextlib import nullcontext
from pytorch_lightning import seed_everything
from os.path import join as ospj
from random import randint
from torchvision.utils import save_image
from torchvision.transforms import Resize
from util import *
def process(image, mask):
img_h, img_w = image.shape[:2]
mask = mask[...,:1]//255
contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) != 1: raise gr.Error("One masked area only!")
m_x, m_y, m_w, m_h = cv2.boundingRect(contours[0])
c_x, c_y = m_x + m_w//2, m_y + m_h//2
if img_w > img_h:
if m_w > img_h: raise gr.Error("Illegal mask area!")
if c_x < img_w - c_x:
c_l = max(0, c_x - img_h//2)
c_r = c_l + img_h
else:
c_r = min(img_w, c_x + img_h//2)
c_l = c_r - img_h
image = image[:,c_l:c_r,:]
mask = mask[:,c_l:c_r,:]
else:
if m_h > img_w: raise gr.Error("Illegal mask area!")
if c_y < img_h - c_y:
c_t = max(0, c_y - img_w//2)
c_b = c_t + img_w
else:
c_b = min(img_h, c_y + img_w//2)
c_t = c_b - img_w
image = image[c_t:c_b,:,:]
mask = mask[c_t:c_b,:,:]
image = torch.from_numpy(image.transpose(2,0,1)).to(dtype=torch.float32) / 127.5 - 1.0
mask = torch.from_numpy(mask.transpose(2,0,1)).to(dtype=torch.float32)
image = resize(image[None])[0]
mask = resize(mask[None])[0]
masked = image * (1 - mask)
return image, mask, masked
def predict(cfgs, model, sampler, batch):
context = nullcontext if cfgs.aae_enabled else torch.no_grad
with context():
batch, batch_uc_1 = prepare_batch(cfgs, batch)
c, uc_1 = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc_1,
force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
)
x = sampler.get_init_noise(cfgs, model, cond=c, batch=batch, uc=uc_1)
samples_z = sampler(model, x, cond=c, batch=batch, uc=uc_1, init_step=0,
aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
return samples, samples_z
def demo_predict(input_blk, text, num_samples, steps, scale, seed, show_detail):
global cfgs, global_index
if len(text) < cfgs.txt_len[0] or len(text) > cfgs.txt_len[1]:
raise gr.Error("Illegal text length!")
global_index += 1
if num_samples > 1: cfgs.noise_iters = 0
cfgs.batch_size = num_samples
cfgs.steps = steps
cfgs.scale[0] = scale
cfgs.detailed = show_detail
seed_everything(seed)
sampler.num_steps = steps
sampler.guider.scale_value = scale
image = input_blk["image"]
mask = input_blk["mask"]
image, mask, masked = process(image, mask)
seg_mask = torch.cat((torch.ones(len(text)), torch.zeros(cfgs.seq_len-len(text))))
# additional cond
txt = f"\"{text}\""
original_size_as_tuple = torch.tensor((cfgs.H, cfgs.W))
crop_coords_top_left = torch.tensor((0, 0))
target_size_as_tuple = torch.tensor((cfgs.H, cfgs.W))
image = torch.tile(image[None], (num_samples, 1, 1, 1))
mask = torch.tile(mask[None], (num_samples, 1, 1, 1))
masked = torch.tile(masked[None], (num_samples, 1, 1, 1))
seg_mask = torch.tile(seg_mask[None], (num_samples, 1))
original_size_as_tuple = torch.tile(original_size_as_tuple[None], (num_samples, 1))
crop_coords_top_left = torch.tile(crop_coords_top_left[None], (num_samples, 1))
target_size_as_tuple = torch.tile(target_size_as_tuple[None], (num_samples, 1))
text = [text for i in range(num_samples)]
txt = [txt for i in range(num_samples)]
name = [str(global_index) for i in range(num_samples)]
batch = {
"image": image,
"mask": mask,
"masked": masked,
"seg_mask": seg_mask,
"label": text,
"txt": txt,
"original_size_as_tuple": original_size_as_tuple,
"crop_coords_top_left": crop_coords_top_left,
"target_size_as_tuple": target_size_as_tuple,
"name": name
}
samples, samples_z = predict(cfgs, model, sampler, batch)
samples = samples.cpu().numpy().transpose(0, 2, 3, 1) * 255
results = [Image.fromarray(sample.astype(np.uint8)) for sample in samples]
if cfgs.detailed:
sections = []
attn_map = Image.open(f"./temp/attn_map/attn_map_{global_index}.png")
seg_maps = np.load(f"./temp/seg_map/seg_{global_index}.npy")
for i, seg_map in enumerate(seg_maps):
seg_map = cv2.resize(seg_map, (cfgs.W, cfgs.H))
sections.append((seg_map, text[0][i]))
seg = (results[0], sections)
else:
attn_map = None
seg = None
return results, attn_map, seg
if __name__ == "__main__":
os.makedirs("./temp", exist_ok=True)
os.makedirs("./temp/attn_map", exist_ok=True)
os.makedirs("./temp/seg_map", exist_ok=True)
cfgs = OmegaConf.load("./configs/demo.yaml")
model = init_model(cfgs)
sampler = init_sampling(cfgs)
global_index = 0
resize = Resize((cfgs.H, cfgs.W))
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 600; font-size: 2rem; margin: 0.5rem;">
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
</h1>
<ul style="text-align: center; margin: 0.5rem;">
<li style="display: inline-block; margin:auto;"><a href='https://arxiv.org/abs/2312.04884'><img src='https://img.shields.io/badge/Arxiv-2312.04884-DF826C'></a></li>
<li style="display: inline-block; margin:auto;"><a href='https://github.com/ZYM-PKU/UDiffText'><img src='https://img.shields.io/badge/Code-UDiffText-D0F288'></a></li>
<li style="display: inline-block; margin:auto;"><a href='https://udifftext.github.io'><img src='https://img.shields.io/badge/Project-UDiffText-8ADAB2'></a></li>
</ul>
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin: 0.5rem;">
Our proposed UDiffText is capable of synthesizing accurate and harmonious text in either synthetic or real-word images, thus can be applied to tasks like scene text editing (a), arbitrary text generation (b) and accurate T2I generation (c)
</h2>
<div align=center><img src="file/demo/teaser.png" alt="UDiffText" width="80%"></div>
</div>
"""
)
with gr.Row():
with gr.Column():
input_blk = gr.Image(source='upload', tool='sketch', type="numpy", label="Input", height=512)
gr.Markdown("Notice: please draw horizontally to indicate only **one** masked area.")
text = gr.Textbox(label="Text to render: (1~12 characters)", info="the text you want to render at the masked region")
run_button = gr.Button(variant="primary")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", info="number of generated images, locked as 1", minimum=1, maximum=1, value=1, step=1)
steps = gr.Slider(label="Steps", info ="denoising sampling steps", minimum=1, maximum=200, value=50, step=1)
scale = gr.Slider(label="Guidance Scale", info="the scale of classifier-free guidance (CFG)", minimum=0.0, maximum=10.0, value=4.0, step=0.1)
seed = gr.Slider(label="Seed", info="random seed for noise initialization", minimum=0, maximum=2147483647, step=1, randomize=True)
show_detail = gr.Checkbox(label="Show Detail", info="show the additional visualization results", value=False)
with gr.Column():
gallery = gr.Gallery(label="Output", height=512, preview=True)
with gr.Accordion("Visualization results", open=True):
with gr.Tab(label="Attention Maps"):
gr.Markdown("### Attention maps for each character (extracted from middle blocks at intermediate sampling step):")
attn_map = gr.Image(show_label=False, show_download_button=False)
with gr.Tab(label="Segmentation Maps"):
gr.Markdown("### Character-level segmentation maps (using upscaled attention maps):")
seg_map = gr.AnnotatedImage(height=384, show_label=False)
# examples
examples = []
example_paths = sorted(glob.glob(ospj("./demo/examples", "*")))
for example_path in example_paths:
label = example_path.split(os.sep)[-1].split(".")[0].split("_")[0]
examples.append([example_path, label])
gr.Markdown("## Examples:")
gr.Examples(
examples=examples,
inputs=[input_blk, text]
)
run_button.click(fn=demo_predict, inputs=[input_blk, text, num_samples, steps, scale, seed, show_detail], outputs=[gallery, attn_map, seg_map])
block.launch()