Spaces:
Paused
Paused
import math | |
from inspect import isfunction | |
from typing import Any, Optional | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from packaging import version | |
from torch import nn, einsum | |
if version.parse(torch.__version__) >= version.parse("2.0.0"): | |
SDP_IS_AVAILABLE = True | |
from torch.backends.cuda import SDPBackend, sdp_kernel | |
BACKEND_MAP = { | |
SDPBackend.MATH: { | |
"enable_math": True, | |
"enable_flash": False, | |
"enable_mem_efficient": False, | |
}, | |
SDPBackend.FLASH_ATTENTION: { | |
"enable_math": False, | |
"enable_flash": True, | |
"enable_mem_efficient": False, | |
}, | |
SDPBackend.EFFICIENT_ATTENTION: { | |
"enable_math": False, | |
"enable_flash": False, | |
"enable_mem_efficient": True, | |
}, | |
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True}, | |
} | |
else: | |
from contextlib import nullcontext | |
SDP_IS_AVAILABLE = False | |
sdp_kernel = nullcontext | |
BACKEND_MAP = {} | |
print( | |
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, " | |
f"you are using PyTorch {torch.__version__}. You might want to consider upgrading." | |
) | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILABLE = True | |
except: | |
XFORMERS_IS_AVAILABLE = False | |
print("no module 'xformers'. Processing without...") | |
from .diffusionmodules.util import checkpoint | |
def exists(val): | |
return val is not None | |
def uniq(arr): | |
return {el: True for el in arr}.keys() | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def max_neg_value(t): | |
return -torch.finfo(t.dtype).max | |
def init_(tensor): | |
dim = tensor.shape[-1] | |
std = 1 / math.sqrt(dim) | |
tensor.uniform_(-std, std) | |
return tensor | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = ( | |
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) | |
if not glu | |
else GEGLU(dim, inner_dim) | |
) | |
self.net = nn.Sequential( | |
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def Normalize(in_channels): | |
return torch.nn.GroupNorm( | |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
class LinearAttention(nn.Module): | |
def __init__(self, dim, heads=4, dim_head=32): | |
super().__init__() | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) | |
self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
qkv = self.to_qkv(x) | |
q, k, v = rearrange( | |
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 | |
) | |
k = k.softmax(dim=-1) | |
context = torch.einsum("bhdn,bhen->bhde", k, v) | |
out = torch.einsum("bhde,bhdn->bhen", context, q) | |
out = rearrange( | |
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w | |
) | |
return self.to_out(out) | |
class SpatialSelfAttention(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = rearrange(q, "b c h w -> b (h w) c") | |
k = rearrange(k, "b c h w -> b c (h w)") | |
w_ = torch.einsum("bij,bjk->bik", q, k) | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = rearrange(v, "b c h w -> b c (h w)") | |
w_ = rearrange(w_, "b i j -> b j i") | |
h_ = torch.einsum("bij,bjk->bik", v, w_) | |
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class CrossAttention(nn.Module): | |
def __init__( | |
self, | |
query_dim, | |
context_dim=None, | |
heads=8, | |
dim_head=64, | |
dropout=0.0, | |
backend=None, | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = zero_module(nn.Sequential( | |
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
)) | |
self.backend = backend | |
self.attn_map_cache = None | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
additional_tokens=None, | |
n_times_crossframe_attn_in_self=0, | |
): | |
h = self.heads | |
if additional_tokens is not None: | |
# get the number of masked tokens at the beginning of the output sequence | |
n_tokens_to_mask = additional_tokens.shape[1] | |
# add additional token | |
x = torch.cat([additional_tokens, x], dim=1) | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
if n_times_crossframe_attn_in_self: | |
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439 | |
assert x.shape[0] % n_times_crossframe_attn_in_self == 0 | |
n_cp = x.shape[0] // n_times_crossframe_attn_in_self | |
k = repeat( | |
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp | |
) | |
v = repeat( | |
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp | |
) | |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) | |
## old | |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale | |
del q, k | |
if exists(mask): | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
# attention, what we cannot get enough of | |
sim = sim.softmax(dim=-1) | |
# save attn_map | |
if self.attn_map_cache is not None: | |
bh, n, l = sim.shape | |
size = int(n**0.5) | |
self.attn_map_cache["size"] = size | |
self.attn_map_cache["attn_map"] = sim | |
out = einsum('b i j, b j d -> b i d', sim, v) | |
out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | |
## new | |
# with sdp_kernel(**BACKEND_MAP[self.backend]): | |
# # print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape) | |
# out = F.scaled_dot_product_attention( | |
# q, k, v, attn_mask=mask | |
# ) # scale is dim_head ** -0.5 per default | |
# del q, k, v | |
# out = rearrange(out, "b h n d -> b n (h d)", h=h) | |
if additional_tokens is not None: | |
# remove additional token | |
out = out[:, n_tokens_to_mask:] | |
return self.to_out(out) | |
class MemoryEfficientCrossAttention(nn.Module): | |
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
def __init__( | |
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs | |
): | |
super().__init__() | |
# print( | |
# f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " | |
# f"{heads} heads with a dimension of {dim_head}." | |
# ) | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
) | |
self.attention_op: Optional[Any] = None | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
additional_tokens=None, | |
n_times_crossframe_attn_in_self=0, | |
): | |
if additional_tokens is not None: | |
# get the number of masked tokens at the beginning of the output sequence | |
n_tokens_to_mask = additional_tokens.shape[1] | |
# add additional token | |
x = torch.cat([additional_tokens, x], dim=1) | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
if n_times_crossframe_attn_in_self: | |
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439 | |
assert x.shape[0] % n_times_crossframe_attn_in_self == 0 | |
# n_cp = x.shape[0]//n_times_crossframe_attn_in_self | |
k = repeat( | |
k[::n_times_crossframe_attn_in_self], | |
"b ... -> (b n) ...", | |
n=n_times_crossframe_attn_in_self, | |
) | |
v = repeat( | |
v[::n_times_crossframe_attn_in_self], | |
"b ... -> (b n) ...", | |
n=n_times_crossframe_attn_in_self, | |
) | |
b, _, _ = q.shape | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
# actually compute the attention, what we cannot get enough of | |
out = xformers.ops.memory_efficient_attention( | |
q, k, v, attn_bias=None, op=self.attention_op | |
) | |
# TODO: Use this directly in the attention operation, as a bias | |
if exists(mask): | |
raise NotImplementedError | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
if additional_tokens is not None: | |
# remove additional token | |
out = out[:, n_tokens_to_mask:] | |
return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
ATTENTION_MODES = { | |
"softmax": CrossAttention, # vanilla attention | |
"softmax-xformers": MemoryEfficientCrossAttention, # ampere | |
} | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
d_head, | |
dropout=0.0, | |
context_dim=None, | |
add_context_dim=None, | |
gated_ff=True, | |
checkpoint=True, | |
disable_self_attn=False, | |
attn_mode="softmax", | |
sdp_backend=None, | |
): | |
super().__init__() | |
assert attn_mode in self.ATTENTION_MODES | |
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE: | |
print( | |
f"Attention mode '{attn_mode}' is not available. Falling back to native attention. " | |
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}" | |
) | |
attn_mode = "softmax" | |
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE: | |
print( | |
"We do not support vanilla attention anymore, as it is too expensive. Sorry." | |
) | |
if not XFORMERS_IS_AVAILABLE: | |
assert ( | |
False | |
), "Please install xformers via e.g. 'pip install xformers==0.0.16'" | |
else: | |
print("Falling back to xformers efficient attention.") | |
attn_mode = "softmax-xformers" | |
attn_cls = self.ATTENTION_MODES[attn_mode] | |
if version.parse(torch.__version__) >= version.parse("2.0.0"): | |
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend) | |
else: | |
assert sdp_backend is None | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = attn_cls( | |
query_dim=dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
context_dim=context_dim if self.disable_self_attn else None, | |
backend=sdp_backend, | |
) # is a self-attention if not self.disable_self_attn | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
if context_dim is not None and context_dim > 0: | |
self.attn2 = attn_cls( | |
query_dim=dim, | |
context_dim=context_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
backend=sdp_backend, | |
) # is self-attn if context is none | |
if add_context_dim is not None and add_context_dim > 0: | |
self.add_attn = attn_cls( | |
query_dim=dim, | |
context_dim=add_context_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
backend=sdp_backend, | |
) # is self-attn if context is none | |
self.add_norm = nn.LayerNorm(dim) | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward( | |
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0 | |
): | |
kwargs = {"x": x} | |
if context is not None: | |
kwargs.update({"context": context}) | |
if additional_tokens is not None: | |
kwargs.update({"additional_tokens": additional_tokens}) | |
if n_times_crossframe_attn_in_self: | |
kwargs.update( | |
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self} | |
) | |
return checkpoint( | |
self._forward, (x, context, add_context), self.parameters(), self.checkpoint | |
) | |
def _forward( | |
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0 | |
): | |
x = ( | |
self.attn1( | |
self.norm1(x), | |
context=context if self.disable_self_attn else None, | |
additional_tokens=additional_tokens, | |
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self | |
if not self.disable_self_attn | |
else 0, | |
) | |
+ x | |
) | |
if hasattr(self, "attn2"): | |
x = ( | |
self.attn2( | |
self.norm2(x), context=context, additional_tokens=additional_tokens | |
) | |
+ x | |
) | |
if hasattr(self, "add_attn"): | |
x = ( | |
self.add_attn( | |
self.add_norm(x), context=add_context, additional_tokens=additional_tokens | |
) | |
+ x | |
) | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class BasicTransformerSingleLayerBlock(nn.Module): | |
ATTENTION_MODES = { | |
"softmax": CrossAttention, # vanilla attention | |
"softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version | |
# (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128]) | |
} | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
d_head, | |
dropout=0.0, | |
context_dim=None, | |
gated_ff=True, | |
checkpoint=True, | |
attn_mode="softmax", | |
): | |
super().__init__() | |
assert attn_mode in self.ATTENTION_MODES | |
attn_cls = self.ATTENTION_MODES[attn_mode] | |
self.attn1 = attn_cls( | |
query_dim=dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
context_dim=context_dim, | |
) | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None): | |
return checkpoint( | |
self._forward, (x, context), self.parameters(), self.checkpoint | |
) | |
def _forward(self, x, context=None): | |
x = self.attn1(self.norm1(x), context=context) + x | |
x = self.ff(self.norm2(x)) + x | |
return x | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
NEW: use_linear for more efficiency instead of the 1x1 convs | |
""" | |
def __init__( | |
self, | |
in_channels, | |
n_heads, | |
d_head, | |
depth=1, | |
dropout=0.0, | |
context_dim=None, | |
add_context_dim=None, | |
disable_self_attn=False, | |
use_linear=False, | |
attn_type="softmax", | |
use_checkpoint=True, | |
# sdp_backend=SDPBackend.FLASH_ATTENTION | |
sdp_backend=None, | |
): | |
super().__init__() | |
# print( | |
# f"constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads" | |
# ) | |
from omegaconf import ListConfig | |
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)): | |
context_dim = [context_dim] | |
if exists(context_dim) and isinstance(context_dim, list): | |
if depth != len(context_dim): | |
# print( | |
# f"WARNING: {self.__class__.__name__}: Found context dims {context_dim} of depth {len(context_dim)}, " | |
# f"which does not match the specified 'depth' of {depth}. Setting context_dim to {depth * [context_dim[0]]} now." | |
# ) | |
# depth does not match context dims. | |
assert all( | |
map(lambda x: x == context_dim[0], context_dim) | |
), "need homogenous context_dim to match depth automatically" | |
context_dim = depth * [context_dim[0]] | |
elif context_dim is None: | |
context_dim = [None] * depth | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = Normalize(in_channels) | |
if not use_linear: | |
self.proj_in = nn.Conv2d( | |
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
) | |
else: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
n_heads, | |
d_head, | |
dropout=dropout, | |
context_dim=context_dim[d], | |
add_context_dim=add_context_dim, | |
disable_self_attn=disable_self_attn, | |
attn_mode=attn_type, | |
checkpoint=use_checkpoint, | |
sdp_backend=sdp_backend, | |
) | |
for d in range(depth) | |
] | |
) | |
if not use_linear: | |
self.proj_out = zero_module( | |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
) | |
else: | |
# self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) | |
self.use_linear = use_linear | |
def forward(self, x, context=None, add_context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if not isinstance(context, list): | |
context = [context] | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, "b c h w -> b (h w) c").contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
if i > 0 and len(context) == 1: | |
i = 0 # use same context for each block | |
x = block(x, context=context[i], add_context=add_context) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in | |
def benchmark_attn(): | |
# Lets define a helpful benchmarking function: | |
# https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
import torch.nn.functional as F | |
import torch.utils.benchmark as benchmark | |
def benchmark_torch_function_in_microseconds(f, *args, **kwargs): | |
t0 = benchmark.Timer( | |
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f} | |
) | |
return t0.blocked_autorange().mean * 1e6 | |
# Lets define the hyper-parameters of our input | |
batch_size = 32 | |
max_sequence_len = 1024 | |
num_heads = 32 | |
embed_dimension = 32 | |
dtype = torch.float16 | |
query = torch.rand( | |
batch_size, | |
num_heads, | |
max_sequence_len, | |
embed_dimension, | |
device=device, | |
dtype=dtype, | |
) | |
key = torch.rand( | |
batch_size, | |
num_heads, | |
max_sequence_len, | |
embed_dimension, | |
device=device, | |
dtype=dtype, | |
) | |
value = torch.rand( | |
batch_size, | |
num_heads, | |
max_sequence_len, | |
embed_dimension, | |
device=device, | |
dtype=dtype, | |
) | |
print(f"q/k/v shape:", query.shape, key.shape, value.shape) | |
# Lets explore the speed of each of the 3 implementations | |
from torch.backends.cuda import SDPBackend, sdp_kernel | |
# Helpful arguments mapper | |
backend_map = { | |
SDPBackend.MATH: { | |
"enable_math": True, | |
"enable_flash": False, | |
"enable_mem_efficient": False, | |
}, | |
SDPBackend.FLASH_ATTENTION: { | |
"enable_math": False, | |
"enable_flash": True, | |
"enable_mem_efficient": False, | |
}, | |
SDPBackend.EFFICIENT_ATTENTION: { | |
"enable_math": False, | |
"enable_flash": False, | |
"enable_mem_efficient": True, | |
}, | |
} | |
from torch.profiler import ProfilerActivity, profile, record_function | |
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA] | |
print( | |
f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds" | |
) | |
with profile( | |
activities=activities, record_shapes=False, profile_memory=True | |
) as prof: | |
with record_function("Default detailed stats"): | |
for _ in range(25): | |
o = F.scaled_dot_product_attention(query, key, value) | |
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) | |
print( | |
f"The math implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds" | |
) | |
with sdp_kernel(**backend_map[SDPBackend.MATH]): | |
with profile( | |
activities=activities, record_shapes=False, profile_memory=True | |
) as prof: | |
with record_function("Math implmentation stats"): | |
for _ in range(25): | |
o = F.scaled_dot_product_attention(query, key, value) | |
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) | |
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]): | |
try: | |
print( | |
f"The flash attention implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds" | |
) | |
except RuntimeError: | |
print("FlashAttention is not supported. See warnings for reasons.") | |
with profile( | |
activities=activities, record_shapes=False, profile_memory=True | |
) as prof: | |
with record_function("FlashAttention stats"): | |
for _ in range(25): | |
o = F.scaled_dot_product_attention(query, key, value) | |
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) | |
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]): | |
try: | |
print( | |
f"The memory efficient implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds" | |
) | |
except RuntimeError: | |
print("EfficientAttention is not supported. See warnings for reasons.") | |
with profile( | |
activities=activities, record_shapes=False, profile_memory=True | |
) as prof: | |
with record_function("EfficientAttention stats"): | |
for _ in range(25): | |
o = F.scaled_dot_product_attention(query, key, value) | |
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) | |
def run_model(model, x, context): | |
return model(x, context) | |
def benchmark_transformer_blocks(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
import torch.utils.benchmark as benchmark | |
def benchmark_torch_function_in_microseconds(f, *args, **kwargs): | |
t0 = benchmark.Timer( | |
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f} | |
) | |
return t0.blocked_autorange().mean * 1e6 | |
checkpoint = True | |
compile = False | |
batch_size = 32 | |
h, w = 64, 64 | |
context_len = 77 | |
embed_dimension = 1024 | |
context_dim = 1024 | |
d_head = 64 | |
transformer_depth = 4 | |
n_heads = embed_dimension // d_head | |
dtype = torch.float16 | |
model_native = SpatialTransformer( | |
embed_dimension, | |
n_heads, | |
d_head, | |
context_dim=context_dim, | |
use_linear=True, | |
use_checkpoint=checkpoint, | |
attn_type="softmax", | |
depth=transformer_depth, | |
sdp_backend=SDPBackend.FLASH_ATTENTION, | |
).to(device) | |
model_efficient_attn = SpatialTransformer( | |
embed_dimension, | |
n_heads, | |
d_head, | |
context_dim=context_dim, | |
use_linear=True, | |
depth=transformer_depth, | |
use_checkpoint=checkpoint, | |
attn_type="softmax-xformers", | |
).to(device) | |
if not checkpoint and compile: | |
print("compiling models") | |
model_native = torch.compile(model_native) | |
model_efficient_attn = torch.compile(model_efficient_attn) | |
x = torch.rand(batch_size, embed_dimension, h, w, device=device, dtype=dtype) | |
c = torch.rand(batch_size, context_len, context_dim, device=device, dtype=dtype) | |
from torch.profiler import ProfilerActivity, profile, record_function | |
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA] | |
with torch.autocast("cuda"): | |
print( | |
f"The native model runs in {benchmark_torch_function_in_microseconds(model_native.forward, x, c):.3f} microseconds" | |
) | |
print( | |
f"The efficientattn model runs in {benchmark_torch_function_in_microseconds(model_efficient_attn.forward, x, c):.3f} microseconds" | |
) | |
print(75 * "+") | |
print("NATIVE") | |
print(75 * "+") | |
torch.cuda.reset_peak_memory_stats() | |
with profile( | |
activities=activities, record_shapes=False, profile_memory=True | |
) as prof: | |
with record_function("NativeAttention stats"): | |
for _ in range(25): | |
model_native(x, c) | |
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) | |
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by native block") | |
print(75 * "+") | |
print("Xformers") | |
print(75 * "+") | |
torch.cuda.reset_peak_memory_stats() | |
with profile( | |
activities=activities, record_shapes=False, profile_memory=True | |
) as prof: | |
with record_function("xformers stats"): | |
for _ in range(25): | |
model_efficient_attn(x, c) | |
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) | |
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by xformers block") | |
def test01(): | |
# conv1x1 vs linear | |
from ..util import count_params | |
conv = nn.Conv2d(3, 32, kernel_size=1).cuda() | |
print(count_params(conv)) | |
linear = torch.nn.Linear(3, 32).cuda() | |
print(count_params(linear)) | |
print(conv.weight.shape) | |
# use same initialization | |
linear.weight = torch.nn.Parameter(conv.weight.squeeze(-1).squeeze(-1)) | |
linear.bias = torch.nn.Parameter(conv.bias) | |
print(linear.weight.shape) | |
x = torch.randn(11, 3, 64, 64).cuda() | |
xr = rearrange(x, "b c h w -> b (h w) c").contiguous() | |
print(xr.shape) | |
out_linear = linear(xr) | |
print(out_linear.mean(), out_linear.shape) | |
out_conv = conv(x) | |
print(out_conv.mean(), out_conv.shape) | |
print("done with test01.\n") | |
def test02(): | |
# try cosine flash attention | |
import time | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
torch.backends.cudnn.benchmark = True | |
print("testing cosine flash attention...") | |
DIM = 1024 | |
SEQLEN = 4096 | |
BS = 16 | |
print(" softmax (vanilla) first...") | |
model = BasicTransformerBlock( | |
dim=DIM, | |
n_heads=16, | |
d_head=64, | |
dropout=0.0, | |
context_dim=None, | |
attn_mode="softmax", | |
).cuda() | |
try: | |
x = torch.randn(BS, SEQLEN, DIM).cuda() | |
tic = time.time() | |
y = model(x) | |
toc = time.time() | |
print(y.shape, toc - tic) | |
except RuntimeError as e: | |
# likely oom | |
print(str(e)) | |
print("\n now flash-cosine...") | |
model = BasicTransformerBlock( | |
dim=DIM, | |
n_heads=16, | |
d_head=64, | |
dropout=0.0, | |
context_dim=None, | |
attn_mode="flash-cosine", | |
).cuda() | |
x = torch.randn(BS, SEQLEN, DIM).cuda() | |
tic = time.time() | |
y = model(x) | |
toc = time.time() | |
print(y.shape, toc - tic) | |
print("done with test02.\n") | |
if __name__ == "__main__": | |
# test01() | |
# test02() | |
# test03() | |
# benchmark_attn() | |
benchmark_transformer_blocks() | |
print("done.") | |