Spaces:
Runtime error
Runtime error
| import sys | |
| import math | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from NTED.op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix | |
| class ExtractionOperation(nn.Module): | |
| def __init__(self, in_channel, num_label, match_kernel): | |
| super(ExtractionOperation, self).__init__() | |
| self.value_conv = EqualConv2d(in_channel, in_channel, match_kernel, 1, match_kernel//2, bias=True) | |
| self.semantic_extraction_filter = EqualConv2d(in_channel, num_label, match_kernel, 1, match_kernel//2, bias=False) | |
| self.softmax = nn.Softmax(dim=-1) | |
| self.num_label = num_label | |
| def forward(self, value, recoder): | |
| key = value | |
| b,c,h,w = value.shape | |
| key = self.semantic_extraction_filter(self.feature_norm(key)) | |
| extraction_softmax = self.softmax(key.view(b, -1, h*w)) #bkm | |
| values_flatten = self.value_conv(value).view(b, -1, h*w) | |
| neural_textures = torch.einsum('bkm,bvm->bvk', extraction_softmax, values_flatten) | |
| recoder['extraction_softmax'].insert(0, extraction_softmax) | |
| recoder['neural_textures'].insert(0, neural_textures) | |
| return neural_textures, extraction_softmax | |
| def feature_norm(self, input_tensor): | |
| input_tensor = input_tensor - input_tensor.mean(dim=1, keepdim=True) | |
| norm = torch.norm(input_tensor, 2, 1, keepdim=True) + sys.float_info.epsilon | |
| out = torch.div(input_tensor, norm) | |
| return out | |
| class DistributionOperation(nn.Module): | |
| def __init__(self, num_label, input_dim, match_kernel=3): | |
| super(DistributionOperation, self).__init__() | |
| self.semantic_distribution_filter = EqualConv2d(input_dim, num_label, | |
| kernel_size=match_kernel, | |
| stride=1, | |
| padding=match_kernel//2) | |
| self.num_label = num_label | |
| def forward(self, query, extracted_feature, recoder): | |
| b,c,h,w = query.shape | |
| query = self.semantic_distribution_filter(query) | |
| query_flatten = query.view(b, self.num_label, -1) | |
| query_softmax = F.softmax(query_flatten, 1) | |
| values_q = torch.einsum('bkm,bkv->bvm', query_softmax, extracted_feature.permute(0,2,1)) | |
| attn_out = values_q.view(b,-1,h,w) | |
| recoder['semantic_distribution'].append(query) | |
| return attn_out | |
| class EncoderLayer(nn.Sequential): | |
| def __init__( | |
| self, | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| downsample=False, | |
| blur_kernel=[1, 3, 3, 1], | |
| bias=True, | |
| activate=True, | |
| use_extraction=False, | |
| num_label=None, | |
| match_kernel=None, | |
| num_extractions=2 | |
| ): | |
| super().__init__() | |
| if downsample: | |
| factor = 2 | |
| p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
| pad0 = (p + 1) // 2 | |
| pad1 = p // 2 | |
| self.blur = Blur(blur_kernel, pad=(pad0, pad1)) | |
| stride = 2 | |
| padding = 0 | |
| else: | |
| self.blur = None | |
| stride = 1 | |
| padding = kernel_size // 2 | |
| self.conv = EqualConv2d( | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| padding=padding, | |
| stride=stride, | |
| bias=bias and not activate, | |
| ) | |
| self.activate = FusedLeakyReLU(out_channel, bias=bias) if activate else None | |
| self.use_extraction = use_extraction | |
| if self.use_extraction: | |
| self.extraction_operations = nn.ModuleList() | |
| for _ in range(num_extractions): | |
| self.extraction_operations.append( | |
| ExtractionOperation( | |
| out_channel, | |
| num_label, | |
| match_kernel | |
| ) | |
| ) | |
| def forward(self, input, recoder=None): | |
| out = self.blur(input) if self.blur is not None else input | |
| out = self.conv(out) | |
| out = self.activate(out) if self.activate is not None else out | |
| if self.use_extraction: | |
| for extraction_operation in self.extraction_operations: | |
| extraction_operation(out, recoder) | |
| return out | |
| class DecoderLayer(nn.Module): | |
| def __init__( | |
| self, | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| upsample=False, | |
| blur_kernel=[1, 3, 3, 1], | |
| bias=True, | |
| activate=True, | |
| use_distribution=True, | |
| num_label=16, | |
| match_kernel=3, | |
| ): | |
| super().__init__() | |
| if upsample: | |
| factor = 2 | |
| p = (len(blur_kernel) - factor) - (kernel_size - 1) | |
| pad0 = (p + 1) // 2 + factor - 1 | |
| pad1 = p // 2 + 1 | |
| self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) | |
| self.conv = EqualTransposeConv2d( | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| stride=2, | |
| padding=0, | |
| bias=bias and not activate, | |
| ) | |
| else: | |
| self.conv = EqualConv2d( | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| stride=1, | |
| padding=kernel_size//2, | |
| bias=bias and not activate, | |
| ) | |
| self.blur = None | |
| self.distribution_operation = DistributionOperation( | |
| num_label, | |
| out_channel, | |
| match_kernel=match_kernel | |
| ) if use_distribution else None | |
| self.activate = FusedLeakyReLU(out_channel, bias=bias) if activate else None | |
| self.use_distribution = use_distribution | |
| def forward(self, input, neural_texture=None, recoder=None): | |
| out = self.conv(input) | |
| out = self.blur(out) if self.blur is not None else out | |
| if self.use_distribution and neural_texture is not None: | |
| out_attn = self.distribution_operation(out, neural_texture, recoder) | |
| out = (out + out_attn) / math.sqrt(2) | |
| out = self.activate(out.contiguous()) if self.activate is not None else out | |
| return out | |
| class EqualConv2d(nn.Module): | |
| def __init__( | |
| self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True | |
| ): | |
| super().__init__() | |
| self.weight = nn.Parameter( | |
| torch.randn(out_channel, in_channel, kernel_size, kernel_size) | |
| ) | |
| self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
| self.stride = stride | |
| self.padding = padding | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(out_channel)) | |
| else: | |
| self.bias = None | |
| def forward(self, input): | |
| out = conv2d_gradfix.conv2d( | |
| input, | |
| self.weight * self.scale, | |
| bias=self.bias, | |
| stride=self.stride, | |
| padding=self.padding, | |
| ) | |
| return out | |
| def __repr__(self): | |
| return ( | |
| f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]}," | |
| f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})" | |
| ) | |
| class EqualTransposeConv2d(nn.Module): | |
| def __init__( | |
| self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True | |
| ): | |
| super().__init__() | |
| self.weight = nn.Parameter( | |
| torch.randn(out_channel, in_channel, kernel_size, kernel_size) | |
| ) | |
| self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
| self.stride = stride | |
| self.padding = padding | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(out_channel)) | |
| else: | |
| self.bias = None | |
| def forward(self, input): | |
| weight = self.weight.transpose(0,1) | |
| out = conv2d_gradfix.conv_transpose2d( | |
| input, | |
| weight * self.scale, | |
| bias=self.bias, | |
| stride=self.stride, | |
| padding=self.padding, | |
| ) | |
| return out | |
| def __repr__(self): | |
| return ( | |
| f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]}," | |
| f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})" | |
| ) | |
| class ToRGB(nn.Module): | |
| def __init__( | |
| self, | |
| in_channel, | |
| upsample=True, | |
| blur_kernel=[1, 3, 3, 1] | |
| ): | |
| super().__init__() | |
| if upsample: | |
| self.upsample = Upsample(blur_kernel) | |
| self.conv = EqualConv2d(in_channel, 3, 3, stride=1, padding=1) | |
| def forward(self, input, skip=None): | |
| out = self.conv(input) | |
| if skip is not None: | |
| skip = self.upsample(skip) | |
| out = out + skip | |
| return out | |
| class EqualLinear(nn.Module): | |
| def __init__( | |
| self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None | |
| ): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
| else: | |
| self.bias = None | |
| self.activation = activation | |
| self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
| self.lr_mul = lr_mul | |
| def forward(self, input): | |
| if self.activation: | |
| out = F.linear(input, self.weight * self.scale) | |
| out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
| else: | |
| out = F.linear( | |
| input, self.weight * self.scale, bias=self.bias * self.lr_mul | |
| ) | |
| return out | |
| def __repr__(self): | |
| return ( | |
| f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})" | |
| ) | |
| class Upsample(nn.Module): | |
| def __init__(self, kernel, factor=2): | |
| super().__init__() | |
| self.factor = factor | |
| kernel = make_kernel(kernel) * (factor ** 2) | |
| self.register_buffer("kernel", kernel) | |
| p = kernel.shape[0] - factor | |
| pad0 = (p + 1) // 2 + factor - 1 | |
| pad1 = p // 2 | |
| self.pad = (pad0, pad1) | |
| def forward(self, input): | |
| out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) | |
| return out | |
| class ResBlock(nn.Module): | |
| def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
| self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) | |
| self.skip = ConvLayer( | |
| in_channel, out_channel, 1, downsample=True, activate=False, bias=False | |
| ) | |
| def forward(self, input): | |
| out = self.conv1(input) | |
| out = self.conv2(out) | |
| skip = self.skip(input) | |
| out = (out + skip) / math.sqrt(2) | |
| return out | |
| class ConvLayer(nn.Sequential): | |
| def __init__( | |
| self, | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| downsample=False, | |
| blur_kernel=[1, 3, 3, 1], | |
| bias=True, | |
| activate=True, | |
| ): | |
| layers = [] | |
| if downsample: | |
| factor = 2 | |
| p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
| pad0 = (p + 1) // 2 | |
| pad1 = p // 2 | |
| layers.append(Blur(blur_kernel, pad=(pad0, pad1))) | |
| stride = 2 | |
| self.padding = 0 | |
| else: | |
| stride = 1 | |
| self.padding = kernel_size // 2 | |
| layers.append( | |
| EqualConv2d( | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| padding=self.padding, | |
| stride=stride, | |
| bias=bias and not activate, | |
| ) | |
| ) | |
| if activate: | |
| layers.append(FusedLeakyReLU(out_channel, bias=bias)) | |
| super().__init__(*layers) | |
| class Blur(nn.Module): | |
| def __init__(self, kernel, pad, upsample_factor=1): | |
| super().__init__() | |
| kernel = make_kernel(kernel) | |
| if upsample_factor > 1: | |
| kernel = kernel * (upsample_factor ** 2) | |
| self.register_buffer("kernel", kernel) | |
| self.pad = pad | |
| def forward(self, input): | |
| out = upfirdn2d(input, self.kernel, pad=self.pad) | |
| return out | |
| def make_kernel(k): | |
| k = torch.tensor(k, dtype=torch.float32) | |
| if k.ndim == 1: | |
| k = k[None, :] * k[:, None] | |
| k /= k.sum() | |
| return k | |
| def accumulate(model1, model2, decay=0.999): | |
| par1 = dict(model1.named_parameters()) | |
| par2 = dict(model2.named_parameters()) | |
| for k in par1.keys(): | |
| par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay) |