Spaces:
Running
on
Zero
Running
on
Zero
import importlib | |
import os | |
import os.path as osp | |
import shutil | |
import sys | |
from pathlib import Path | |
import av | |
import numpy as np | |
import torch | |
import torchvision | |
from einops import rearrange | |
from PIL import Image | |
def seed_everything(seed): | |
import random | |
import numpy as np | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed % (2**32)) | |
random.seed(seed) | |
def import_filename(filename): | |
spec = importlib.util.spec_from_file_location("mymodule", filename) | |
module = importlib.util.module_from_spec(spec) | |
sys.modules[spec.name] = module | |
spec.loader.exec_module(module) | |
return module | |
def delete_additional_ckpt(base_path, num_keep): | |
dirs = [] | |
for d in os.listdir(base_path): | |
if d.startswith("checkpoint-"): | |
dirs.append(d) | |
num_tot = len(dirs) | |
if num_tot <= num_keep: | |
return | |
# ensure ckpt is sorted and delete the ealier! | |
del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep] | |
for d in del_dirs: | |
path_to_dir = osp.join(base_path, d) | |
if osp.exists(path_to_dir): | |
shutil.rmtree(path_to_dir) | |
def save_videos_from_pil(pil_images, path, fps=8): | |
import av | |
save_fmt = Path(path).suffix | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
width, height = pil_images[0].size | |
if save_fmt == ".mp4": | |
codec = "libx264" | |
container = av.open(path, "w") | |
stream = container.add_stream(codec, rate=fps) | |
stream.width = width | |
stream.height = height | |
for pil_image in pil_images: | |
# pil_image = Image.fromarray(image_arr).convert("RGB") | |
av_frame = av.VideoFrame.from_image(pil_image) | |
container.mux(stream.encode(av_frame)) | |
container.mux(stream.encode()) | |
container.close() | |
elif save_fmt == ".gif": | |
pil_images[0].save( | |
fp=path, | |
format="GIF", | |
append_images=pil_images[1:], | |
save_all=True, | |
duration=(1 / fps * 1000), | |
loop=0, | |
) | |
else: | |
raise ValueError("Unsupported file type. Use .mp4 or .gif.") | |
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
height, width = videos.shape[-2:] | |
outputs = [] | |
for x in videos: | |
x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
x = Image.fromarray(x) | |
outputs.append(x) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
save_videos_from_pil(outputs, path, fps) | |
def read_frames(video_path): | |
container = av.open(video_path) | |
video_stream = next(s for s in container.streams if s.type == "video") | |
frames = [] | |
for packet in container.demux(video_stream): | |
for frame in packet.decode(): | |
image = Image.frombytes( | |
"RGB", | |
(frame.width, frame.height), | |
frame.to_rgb().to_ndarray(), | |
) | |
frames.append(image) | |
return frames | |
def get_fps(video_path): | |
container = av.open(video_path) | |
video_stream = next(s for s in container.streams if s.type == "video") | |
fps = video_stream.average_rate | |
container.close() | |
return fps | |