Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
def get_mask_from_lengths(lengths, max_len=None): | |
lengths = lengths.to(torch.long) | |
if max_len is None: | |
max_len = torch.max(lengths).item() | |
ids = torch.arange(0, max_len).unsqueeze(0).expand(lengths.shape[0], -1).to(lengths.device) | |
mask = ids < lengths.unsqueeze(1).expand(-1, max_len) | |
return mask | |
def linear_interpolation(features, seq_len): | |
features = features.transpose(1, 2) | |
output_features = F.interpolate(features, size=seq_len, align_corners=True, mode='linear') | |
return output_features.transpose(1, 2) | |
if __name__ == "__main__": | |
import numpy as np | |
mask = ~get_mask_from_lengths(torch.from_numpy(np.array([4,6]))) | |
import pdb; pdb.set_trace() |